نام پژوهشگر: احسان موحدنژاد
احسان موحدنژاد فتح اله امی
توزیع قطر و سرعت قطرات از پارمترهای مشخصه یک انژکتور است که کمک شایانی به شناخت اسپری و تحلیل خصوصیات پاشش می کند و جهت طراحی و بهینه سازی سیستم های پاشش از اهمیت ویژه ای برخوردار می باشد. همچنین اطلاعات مربوط به توزیع مشخصه های قطرات در پایین دست اسپری به عنوان شرایط مرزی برای محاسبات دینامیکی سیال اسپری و کدهای cfd ضروری می باشد. صرفنظر از نوع نازل و الگوی پاشش انژکتور مشخصه متمایز کننده اسپری های مختلف می تواند نحوه توزیع سرعت و قطر قطرات باشد. چرا که پارامترهای سرعت و قطر متوسط پاشش نمی تواند به تنهایی گویای همه مشخصه های پاشش باشد و دو انژکتور با الگوی پاشش مختلف و با کاربرد متفاوت می توانند باوجود توزیع متفاوت سرعت و قطر قطرات دارای قطر متوسط و یا سرعت متوسط یکسان باشند. از آنجا که کلیه روشهای ارائه شده برای تخمین توزیع سرعت و قطر قطرات تاکنون نیازمند داده های تجربی و اندازه گیری برخی از پارامترهای پاشش هستند لذا در این رساله با کمک گرفتن از مفاهیم توربولانس جریان داخل نازل و تئوری های رشد امواج ناپایدار بر روی سطح جت تلاش می شود تا پیش بینی توزیع سرعت و قطر قطرات تا حد ممکن از داده های اولیه تجربی مستقل شود. برای این منظور انژکتورهای حلقوی که دارای چتر پاشش بصورت مخروط توخالی بوده و کاربرد فراوانی در موتورهای جلوبرنده و توربین های گاز دارند به عنوان موضوع مطالعه استفاده می شود. در این انژکتورها جریان سیال مایع تحت تاثیر شکل حلقوی نازل و یا نیروی گریز از مرکز وارد بر سیال به صورت لایه ای نازک از سیال از نازل خارج می شود. قبل از خروج سیال از نازل، لایه مرزی و هندسه داخل نازل موجب ایجاد اغتشاشات یا توربولانس در جریان سیال می شود که نتیجه آن اغتشاشات کوچکی بر روی سطح سیال در خروجی جت می باشد. این اغتشاشات تحت تاثیر نیروهای آیرودینامیکی و تقابلات محیط گازی با جت لایه ای سیال در طول جت سیال رشد می کنند و با ایجاد ناپایداری بر روی سطح سیال منجر به شکست جت به تکه های ای از سیال می شوند. تکه های بزرگ سیال نیز مجددا شکسته شده و قطرات کوچکتری را تولید می کنند. این قطرات می توانند دارای محدوده وسیعی از قطر و سرعت باشند و از طرفی دیگر فراوانی قطرات به ازای هر سرعت و قطر می تواند متفاوت باشد. این ویژگی پاشش به عوامل مختلفی شامل هندسه نازل، خصوصیات سیال مایع و محیط گازی اطراف و شرایط عملکرد انژکتور دارد و می تواند توزیع های متفاوتی را برای قطر و سرعت قطرات ایجاد کند. فرایندهای تولید اغتشاشات و رشد امواج ناپایدار روی سطح جت پدیده هایی معین بوده و به روشهای تحلیلی یا عددی قابل تعیین هستند در صورتی که تولید قطرات با قطر و سرعت متفاوت مفهومی اتفاقی دارد و با یک دیدگاه آماری قابل پیش بینی می باشد. برای این منظور در تحقیق حاضر از دیدگاه ماکزیمم آنتروپی شانون برای پیش بینی فراوانی توزیع قطرات استفاده شد. بر اساس این روش در مورد پدیده هایی که اطلاعات کمی از آنها در دست است و جوابهای متعددی می تواند شرایط مدل فیزیکی آنرا ارضا کند، محتمل ترین جواب آن است که منجر به ماکزیمم شدن آنتروپی شانون شود. در این مدل از انتقال حرارت بین محیط و سیال، تبخیر قطرات و برخورد قطرات صرفنظر شده است. استفاده از روش ماکزیمم آنتروپی برای تخمین توزیع سرعت و قطر قطرات نیازمند پاره ای از مشخصه های کلی اسپری مانند سرعت متوسط سیال در خروجی جت، قطر متوسط قطرات بلافاصله بعد از شکست جت و طول شکست جت سیال است که به کمک تحلیل هیدرودینامیکی تولید توربولانس در جریان داخل جت و تحلیل پایداری خطی رشد امواج روی سطح جت بدست می آیند. با استفاده از این تحلیلها مقیاسهای زمانی و طولی توربولانس جریان در خروجی جت و همچنین مقیاسهای زمانی و طولی امواج ناپایدار در موقعیت شکست جت بدست آمده و با ترکیب مقیاسهای طولی و زمانی مذکور به گونه ای که با فیزیک عملکرد این پدیده ها همخوانی داشته باشد، مقیاسهای زمانی و طولی اتمیزاسیون بدست می آید. بدینوسیله مدلهای توربولانس جریان در نازل و رشد امواج ناپایدار با یکدیگر ترکیب شده و با استفاده از ترمهای چشمه ممنتوم و انرژی و همچنین برخی پارامترهای ذکر شده به عنوان شرایط اولیه با مدل ماکزیمم آنتروپی کوپل می شود. ترکیب مدل اصلی ماکزیمم آنتروپی و زیر مدلهای توربولانس و موج که ایده و نوآوری این رساله بوده و برای اولین بار در دنیا انجام می شود منجر به ایجاد یک مدل جامع برای پیش بینی توزیع سرعت و قطر پاشش برای نازلهای جریان حلقوی می شود که وابستگی بسیار کمی به داده های تجربی دارد. در ادامه به منظور اعتبار سنجی نتایج مدل، یک نمونه نازل چرخشی با اسپری با شکل مخروط توخالی با انجام تست های مختلف ماکروسکوپی و میکروسکوپی بررسی و مشخصه های پاشش آن از جمله توزیع سرعت و قطر قطرات استخراج گردید. نتایج مدل ماکزیمم یافته توسعه یافته با استفاده از داده های تجربی مذکور مقایسه شد و همخوانی خوبی را بین نتایج مدل و نتایج تجربی نشان داد. از طرف دیگر توزیع فراوانی پاشش دو نمونه انژکتور دیگر از تحقیقات پیشین با هندسه و کاربرد متفاوت با نتایج مدل تویعه یافته مقایسه شد. لذا پیش بینی می شود مدل توسعه یافته حاضر قادر به تخمین فراوانی توزیع قطرات پاشش برای رنج گسترده ای از انزکتورهای جریان چرخشی با شرایط عملکرد متفاوت باشد.
علی مهرابی فتح الله امّی
انژکتورهای گریز از مرکز دوپایه به علت مزایایی که دارند، امروزه به طور گسترده در صنایع موشکی مورد استفاده قرار می گیرند. گسترش وسیع کاربرد انژکتورهای گریز از مرکز به علت سادگی در ساختار، قابل اطمینان بودن و تأثیر بهینه آنها در اتمیزاسیون سیالات و همچنین دستیابی به چتر پاشش مناسب در آنهاست. تاکنون در تحقیقات مختلف با استفاده از تست سرد، اندازه و نحوه توزیع قطرات سوخت بوسیله این نوع انژکتور انجام شده است ولی نحوه توزیع مکانی قطرات پاشش شده و نحوه تعامل آنها با توربولانس ایجاد شده توسط گازهای بازگشتی به داخل محفظه احتراق و نحوه عملکرد این انژکتور در احتراق واقعی، پدیده فیزیکی است که هنوز بطور کامل مورد مطالعه قرار نگرفته است. بهترین راه برای این هدف، برنامه ریزی و انجام تست گرم این نوع انژکتورها با استفاده از یک موتور در مقیاس واقعی می باشد. ولی به لحاظ زمان و هزینه با ملاحظه محدودیت های اقتصادی برنامه های پژوهشی، طراحی و ساخت و استفاده از یک میکروموتور بهترین گزینه برای این منظور می باشد. از طرفی اهمیت و کاربردهای متعدد میکروموتورها در ماهواره برها و سفینه های فضایی نیز انگیزه ای دیگر برای این انتخاب است. در این تحقیق ابتدا به بیان مفاهیم و موارد استفاده انژکتور گریز از مرکز و میکروموتورهای سوخت مایع پرداخته شده است و سپس بعد از بیان اصول حاکم بر طراحی میکروموتور سوخت مایع با تک انژکتور گریز از مرکز، با اجرای یک پروسه منطقی طراحی، اقدام به طراحی و ساخت این میکروموتور شده است. در پایان، احتراق در این میکروموتور با استفاده از دو نرم افزار astra و rpa مدلسازی گردید و مشاهده گردید که نتایج حاصل از این نرم افزارها برای مقاطع محفظه، نازل و خروجی نازل با نتایج مورد انتظار طراح نزدیکی بسیار زیادی دارند. همچنین برای اطمینان بیشتر، در موارد متعدد نتایج بدست آمده از هریک از نرم افزارها با همدیگر نیز مقایسه شدند که مشاهده گردید که انطباق زیادی با یکدیگر دارند. در واقع ساخت و مدلسازی این میکروموتور گامی مهم و کاربردی برای مقدور ساختن تست گرم انژکتوری می باشد که تا کنون فقط به بررسی و تست های سرد پاشش در آن پرداخته شده بود.