نام پژوهشگر: علی مسجدی
علی مسجدی محمدجواد ولدان زوج
تحقیقات اخیر نشان داده است که طبقه بندی تصاویر سنجش ازدور با کمک روش هایی که از اطلاعات مکانی در کنار اطلاعات طیفی استفاده می کند، نسبت به روش های مبتنی بر فقط اطلاعات طیفی، دقیق تر می باشد. اگرچه طبقه بندی به روش ماشین بردار پشتیبان دارای نتایج دقیق در بیشتر تصاویر سنجش ازدور می باشد ولی این طبقه بندی کننده ذاتا بر مبنای فقط اطلاعات تک پیکسل عمل می کند، که این یک محدودیت برای استفاده از آن می باشد. در این مقاله، تلفیق ماشین بردار پشتیبان با میدان های تصادفی مارکوف به منظور طبقه بندی داده های پلاریمتری رادار با روزنه مصنوعی از یک منطقه شامل گونه های مختلف جنگلی، پوشش گیاهی و آب بر اساس افزودن اطلاعات مکانی انجام می شود. به منظور انتخاب ویژگی های پلاریمتری مناسب و همچنین برآورد خودکار پارامترهای بهینه مورد نیاز، از الگوریتم ژنتیک استفاده می شود. در نهایت نتایج نشان می دهد دقت کلی طبقه بندی با روش پیشنهادی نسبت به روش ماشین بردار پشتیبان، حدود 6 درصد بهبود داشته است.