نام پژوهشگر: مرضیه یوسفی فر
مرضیه یوسفی فر رضا ملاپور اصل
در این پایانامه ، یک روش طیفی هم محلی ژاکوبی برای معادلات انتگرال ولترا از نوع دوم با هسته منفرد ضعیف به فرم کلی زیر مورد بررسی قرار می گیرد y(t)=g(t)+?_0^t?(t-s)^(-µ) k(t,s)y(s)ds در این روش که از مرجع [1] برگرفته شده است ابتدا با استفاده از عملگرهای تبدیل و تغییر متغیرها این معادله را به یک معادله انتگرال جدید که روی فاصله استاندارد [-1,1] تعریف شده است تبدیل می کنیم. بنابراین جواب این معادله جدید دارای بهترین نظم است و قضیه چندجمله ایهای متعامد ژاکوبی به طور مناسب اعمال می شود. به منظور گرفتن بالاترین مرتبه دقت برای تقریب، جمله انتگرال در معادله آخر به وسیله قانون انتگرال گیری طیفی ژاکوبی تقریب زده خواهد شد.درجه همگرایی این روش طیفی در نرم l^? و نرم l^2 وزن دار بررسی شده است نتایج عددی نشان داده شده تاثیرگذاری این روش را تائید می کند.