نام پژوهشگر: مهتاب چولکی
مهتاب چولکی محسن اسماعیل بیگی
در این پایان نامه، روش کمترین مربعات وزن دار مبتنی بر توابع پایه شعاعی برای برازش داده های پراکنده بررسی می گردد. بدین منظور ابتدا به معرفی توابع پایه شعاعی و ویژگی های آن می پردازیم، سپس با معرفی فضاهای سوبولوف و اسپلاین، روش کمترین مربعات وزن دار را برای برازش داده های پراکنده ی اختلال یافته ارایه می دهیم. در ادامه اثبات وجود و یکتایی جواب را مطرح می کنیم و کران خطا را بدست می آوریم. به منظور نمایش کارآمدی روش ارایه شده چند مثال عددی را حل می کنیم و نشان خواهیم داد که روش کمترین مربعات مطرح شده به روش کمترین مربعات رایج در مورد داده های اختلال یافته ترجیح داده می شود. بعلاوه روش کمترین مربعات وزن دار را برای برازش داده های پراکنده هرمیتی اختلال یافته ارائه می دهیم و به تجزیه و تحلیل این روش خواهیم پرداخت . به همین ترتیب با استفاده از ساختار کمترین مربعات وزن دار، مساله برازش داده های اختلال یافته را با استفاده از توابع پایه شعاعی روی دامنه های نامنظم بررسی می کنیم.