نام پژوهشگر: رویا عرب زاده

تعمیم روش های آرنولدی برای معادلات ماتریسی سیلوستر
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان - دانشکده ریاضی و کامپیوتر 1393
  رویا عرب زاده   آزیتا تاج الدینی

دراین پایان نامه معادله سیلوستر با زمان پیوسته‎ax+xb+ef^t=0‎ که ‎$ainmathbb{r}^{n imes n}$‎ ،‎ $binmathbb{r}^{s imes s}$‎ ماتریس های نامنفرد ‎$einmathbb{r}^{n imes r}$‎ و ‎$finmathbb{r}^{s imes r}$‎ دارای رتبه ستونی کامل با ‎$r<<n,s$‎ درنظرگرفته شده است. معادله ماتریسی سیلوستر یک نقش کلیدی را بازی می کند و کاربردهای زیادی در نظریه کنترل و ارتباطات، مساله های کاهش مدل، پایداری بازخوردی مساله های مکان قطبی دارد. جواب معادله سیلوستر در قطری سازی بلوکی یک ماتریس با یک تبدیل متشابه در تکنیک های گسسته سازی برای معادلات دیفرانسیل معمولی و معادلات دیفرانسیل با مشتقات پاره ای ، درتصفیه و ترمیم تصویرمورد نیاز است. همچنین، یک روش تصویری جدید بر مبنای الگوریتم آرنولدی کلی برای حل معادلات ماتریسی سیلوستر ‎$ax+xb+cd^t=0$‎ ومعادلات ماتریسی سیلوستر تعمیم یافته بزرگ ‎$axb+x+cd^t=0$‎ پیشنهاد شده است. نشان داده شده است که چگونه جواب های تقریبی رتبه پایین معادله ماتریسی سیلوستر و معادله ماتریسی سیلوستر تعمیم یافته به دست می آیند. فرض شده است که شرط وجود و یکتایی جواب برای معادله های سیلوستر برقرار است. وقتی که اندازه ماتریس ضرایب ‎$a$‎ و ‎$b$‎ کوچک باشد از روش های عددی مشهور و پرکاربرد مانند الگوریتم شورهسنبرگ استفاده می شود دراین روش بزرگترین ماتریس بین دو ماتریس ‎$ a $‎ و ‎$ b $‎ هسنبرگی و دیگری به فرم شورحقیقی کاهش پیدا می کند. یادآوری می شود که روش شورهسنبرگ یک اصلاح کارا از الگوریتم بارتل استوارت است برای بحث روی پایداری عددی و کارایی روش های شور هسنبرگ و بارتل استوارت و بقیه الگوریتم ها به ‎cite{15}‎ مراجعه کنید. در سال های اخیر تعدادی روش های تصویری بر پایه روش های زیرفضای کرایلف ارائه شده است. ایده اصلی توسعه یافته دراین روش ها، ساخت پایه مناسب برای زیرفضای کرایلف و تصویر مساله بزرگ به مساله کوچک است. بطور طبیعی روش مستقیم برای حل مساله تصویر شده استفاده می شود. گام آخر در فرآیند تصویری شامل بازگردانی جواب مساله اصلی از جواب مساله کوچکتر است. در پایان هر فصل چند مثال عددی ذکر شده است که کارایی روش ها را نشان می دهد.