نام پژوهشگر: چان گیانگ پارک

بهبود پایداری حرارتی و رفتار تریبولوژیکی پوشش های کاربیدتنگستن-کبالت نانوساختار تولید شده با روش پاشش شعله ای پرسرعت
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده مهندسی مواد 1393
  مجید جعفری بهرام آبادی   مهدی صالحی

مواد تنگستن مونوکارباید-کبالت نانوساختار تفت¬جوشی شده به دلیل داشتن تلفیقی از سختی و چقرمگی بالا به عنوان گزینه¬ی مناسبی برای گستره¬ی وسیعی از کاربردهای مقاوم به سایش نظیر ابزارهای برش¬کاری و سوراخ¬کاری و ساخت قالب¬های اکستروژن استفاده می¬شوند. اما بکارگیری ذرات تنگستن مونوکارباید-کبالت نانوساختار جهت تولید پوشش¬های نانوساختار بوسیله¬ی فرایند پاشش شعله¬ای پرسرعت، منجر به افت مقاومت سایشی در مقایسه با پوشش¬های میکروساختار متعارف شده است. این رفتار به دلیل نسبت بسیار بالای سطح-به-حجم ذرات تنگستن مونوکارباید نانومتری است که تجزیه و دکربوراسیون شدید آن¬ها را در حین پاشش شعله¬ای پرسرعت در پی¬ داشته و منجر به ایجاد فازهای نامطلوب غیرتنگستن مونوکارباید می¬شود. بنابراین، هدف از این پژوهش، بهبود پایداری حرارتی و رفتار تریبولوژیکی پوشش¬های تنگستن مونوکارباید-کبالت نانوساختار تولید شده با روش پاشش شعله¬ای پرسرعت است. در این راستا، ابتدا فرایند الکترولس مس و نیکل هریک بطور مجزا بر روی ذرات تنگستن مونوکارباید-کبالت میکروساختار (ms-wc12) انجام شده و ذرات پودر روکش¬دارِ cu/ms-wc و ni/ms-wc تولید و تحت پاشش قرارگرفتند. در ادامه، تأثیر روکش¬های الکترولس مس و نیکل بر میزان دکربوراسیون تنگستن مونوکارباید در حین فرایند پاشش، بررسی شد. با توجه به تأثیر بسیار مطلوب روکش الکترولس نیکل بر افزایش پایداری حرارتی تنگستن مونوکارباید و کاهش چشمگیر میزان دکربوراسیون، ذرات تنگستن مونوکارباید-کبالت نانوساختار (ns-wc) از طریق آسیاکاری مکانیکی تولید شده و روکش الکترولس نیکل بر روی سطح آن¬ها ایجاد شد؛ بدین¬ترتیب، ذرات پودر ni/ns-wc نیز تولید شده و تحت پاشش قرارگرفت. ویژگی¬های پوشش¬های بدست آمده شامل میکروساختار، چگونگی رشد دانه¬های تنگستن مونوکارباید نانومتری، خواص مکانیکی، مقاومت اکسیداسیون دمای بالا، رفتار سایشی دمای محیط و دمای بالا مورد ارزیابی قرارگرفت. نتایج نشان داد که انجام فرایند الکترولس مس بر روی ذرات پودرتنگستن مونوکارباید-کبالت میکروساختار منجر به انحلال شدید کبالت در حمام الکترولس و جایگزینی مس بجای آن بر روی سطح و نیز درون ذرات اولیه شد. مشاهدات انجام شده از سطح مقطع ذرات پودر cu/ms-wc تضعیف اتصال تنگستن مونوکارباید به زمینه و گسستگی آن را به¬ روشنی نشان داد. در مقابل، انجام فرایند الکترولس نیکل بر روی ذرات پودر تنگستن مونوکارباید-کبالت میکروساختار سبب تشکیل یک لایه¬ی متراکم و یکنواخت از نیکل پیرامون ذرات اولیه با ضخامت 5/1-5/0 میکرومتر شد. ارزیابی¬های میکروساختاری و مقایسه¬ی مقدار کربن موجود در پودرهای اولیه و پوشش¬ها، دکربوراسیون ناچیز تنگستن مونوکارباید در پوشش ni/ms-wc در حدود 6/2 درصد را نشان داد درحالی که تنگستن مونوکارباید در پوشش¬های ms-wc12 و cu/ms-wc به¬ترتیب به میزان 3/16 و 2/21 درصد دکربوره شد. در مقایسه با پوشش ms-wc12، در پوشش ns-wc پیک¬های تنگستن دی کارباید (w2c) با شدت بیشتری در الگوی پراش پرتوی ایکس مشاهد شدند؛ این نتیجه، به همراه افت چشمگیر مقدار کربن به میزان 8/36 درصد، تأیید نمود که ذرات ns-wc متحمل دکربوراسیون به¬مراتب شدیدتری نسبت به ذرات پودر ms-wc12 در حین پاشش می¬شوند. در مقابل، پوشش ni/ns-wc عمدتاً از فازهای تنگستن مونوکارباید و زمینه-ی فلزی کبالت/نیکل تشکیل شده و الگوی پراش پرتوی ایکس این پوشش یک پیک بسیار کوچک از فاز تنگستن دی کارباید را با شدت بسیار کمتر در مقایسه با ms-wc12 و ns-wc نشان داد. همچنین، میزان دکربوراسیون تنگستن مونوکارباید در پوشش ni/ns-wc برابر با 4/5 درصد بدست آمد که در مقایسه با پوشش¬های ms-wc12 و ns-wc به¬ترتیب به میزان 66 و 85 درصد کاهش نشان داد. پوشش ni/ms-wc میانگین میکروسختی معادل با 1168 ویکرز را ارائه داد که نشان¬دهنده¬ی سختی بالاتر آن در مقایسه با پوشش ms-wc12 (1120 ویکرز) است. از سوی دیگر، پوشش¬های نانوساختار ns-wc و ni/ns-wc به¬ترتیب با میکروسختی 1185 و 1214 ویکرز، میانگین سختی نسبتاً بالاتری را در مقایسه با پوشش¬های میکروساختار ارائه کردند. چقرمگی شکست پوشش ni/ms-wc برابر با mpa.m1/2 86/9 بدست آمد که در حدود 60 درصد بیشتر از پوشش ms-wc12 (mpa.m1/2 76/5) است. از سوی دیگر، چقرمگی شکست پوشش¬های ni/ns-wc و ns-wc برابر با mpa.m1/2 32/10 و 12/5 اندازه¬گیری شد که به¬ترتیب بیشترین و کمترین مقدار را در مقایسه با سایر پوشش¬ها نشان دادند. ارزیابی مقاومت اکسیداسیونی در بازه¬ی دمایی 800-600 درجه¬ سانتیگراد نشان داد که کینتیک اکسیداسیون برای پوشش¬های ms-wc12 و ns-wc از قانون خطی (با انرژی فعال¬سازی به¬ترتیب برابر با 4/90 و 9/78 کیلوژول بر مول) و در مورد پوشش¬های ni/ms-wc و ni/ns-wc از قانون پارابولیک (با انرژی فعال¬سازی به¬ترتیب برابر با 212 و 5/197 کیلوژول بر مول) پیروی می کند. نرخ سایش دمای محیط پوشش¬های ms-wc12 و ns-wc به¬ترتیب معادل با 4-10×1/10 و 4-10×7/14 میلی¬گرم بر متر اندازه¬گیری شد، درحالی¬که پوشش¬های ni/ms-wc و ni/ns-wc با 4-10×2/3 و 4-10×5/2 میلی¬گرم بر متر، نرخ سایش بسیار کمتری را ارائه می¬کنند. این مقادیر، رشد قابل ملاحظه¬ی مقاومت سایشی پوشش¬های ni/ms-wc و ni/ns-wc به میزان بیش از 68 و 78 درصد نسبت به پوشش¬های ms-wc12 و ns-wc را نشان داد. همچنین، ارزیابی نرخ سایش پوشش¬های مختلف در دمای 700 درجه سانتیگراد نمایانگر پایین¬ترین مقاومت سایشی برای پوشش ns-wc (با نرخ سایش 4-10×7/91 میلی¬گرم بر متر با روش اندازه¬گیری و 4-10×3/119 میلی¬گرم بر متر از طریق محاسبه) و بالاترین مقاومت سایشی برای پوشش ni/ns-wc (با نرخ سایش 4-10×27/25 میلی-گرم بر متر با روش اندازه¬گیری و 4-10×17/24 میلی¬گرم بر متر با روش محاسبه) بود.