نام پژوهشگر: فهیمه متاجی
فهیمه متاجی علیرضا سهیلی
بسیاری از مسائل فیزیک، مهندسی، شیمی و حتی زیست شناسی و دیگر زمینه های علوم که شامل جواب عددی می باشند، عموما در حل آن ها از معادلات دیفرانسیل معمولی استفاده میشود. در بیشتر کاربردها، دستگاه های بزرگ معادلات دیفرانسیل معمولی که به طور عددی حل می شوند از دو قسمت سخت و غیرسخت تشکیل شده اند. روش مشهور برای حل این نوع معادلات روش های ضمنی – صریح ( imex) می باشند. روش ضمنی- صریح شامل به کار بردن گسسته سازی ضمنی برای قسمت سخت و گسسته سازی صریح برای قسمت غیرسخت می باشد. دراین پایان نامه ، دسته ای از روش هایimex چندگامی خطی و روش های imex رانگ- کوتا را مطالعه می کنیم. هدف پایاننامه روی پایداری خطی روش های imex رانگ- کوتا می باشد و روش های imex رانگ- کوتایی را که دارای ناحیه پایداری بزرگتری از روش های imex چندگامی خطی می باشند توسعه می دهیم. ویژگی های همگرایی و پایداری را برای یک معادله واکنش – انتشار به کار می بریم و نشان می دهیم روش با داشتن شرایطی همگرا است.