نام پژوهشگر: سیده عالیه رضائی کوشالشاه
سیده عالیه رضائی کوشالشاه علی مس فروش
در این پایان نامه، روش تطبیقی عناصر متناهی گالرکین زمان گسسته فضا-زمان، شامل شرایط مرزی غیرانعکاسی دقیق مرتبه بالا، برای مسایل موج بی کران را بیان می کنیم. بر اساس روش گاوس- سایدل، طرح تکرار چندسطحی اسپارس را برای حل دستگاه معادلات کاملا گسسته ی درونی و مرزی ارایه می دهیم. با توجه به ماهیت مکانی انتشار موج روند تکراری فقط به چند تکرار در هر گام زمانی نیاز دارد. با قطری سازی ماتریس های میرایی، جرم و مرزی در هزینه صرفه جویی می کنیم. استراتژی فضا-زمانh تطبیقی که بر اساس برآورد خطای فضایی زینکوویچ-زو است را کار می بریم. برآورد خطای زمانی از جهش ناپیوسته بین گام های زمانی جواب میدان درونی و توابع کمکی مرزی به دست می آید. پایداری بدون شرط و گسترش دقت مرتبه بالای روش های فضا-زمان، باعث شده است که گسسته سازی عناصر متناهی روی دامنه زمانی، به خوبی دامنه فضایی، استفاده شود.ولی به طور خاص، پیاده سازی دنباله ای از شرایط مرزی دقیق مرتبه ی بالا را در فضا-زمان روش تطبیقی عناصر متناهی، برای امواج صوتی و مسایل پراکندگی در دامنه های خارجی بررسی می کنیم. روش عناصر متناهی گالرکین گسسته چند میدانی با متغییرهای مستقل را به کار می بریم. از یک طرح تکراری چند سطحی، برای حل دستگاه معادلات کاملا گسسته ی داخلی و مرزی، استفاده می کنیم. روش تکراری در هر گام زمانی فقط به چند تکرار، برای حل مجدد جواب با دقت بالا نیاز دارد. استراتژی فضا-زمان hتطبیقی بر اساس برآورد خطای فضایی زینکوویچ-زو zienkiewicz–zhuاست که از بازیابی قطعه ی فوق همگراsuperconvergent patch recovery همراه با یک برآورد خطای زمانی ناشی از جهش گسسته، در گام های زمانی به دست می آید.گام های زمانی با حفظ تلرانس خطا تنظیم می شوند.