نام پژوهشگر: آزیتا تاج‌الدینی

الگوریتم تکراری برای حل دسته ای از معادلات ماتریسی
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان - دانشکده ریاضی و کامپیوتر 1392
  فاطمه ایرانپور   محمدعلی ولی

الگوریتم های تکراری در شاخه های جبر ماتریسی و دستگاه شناسایی مشهور هستند. برای مثال، استارک و نیتامر یک روش تکراری برای جواب های معادلات سیلوستر زمان پیوسته (ct)، ax+xb=f ارائه دادند. موکیدانی، زو و میزوکامی در مورد یک الگوریتم تکراری برای معادلات لیاپانو جبری تعمیم یافته بحث کردند. روش های ژاکوبی و گاوس سایدل برای ax=b، دو الگوریتم تکراری هستند. اخیرا، دو الگوریتم تکراری برمبنای گرادیان و یک الگوریتم تکراری برمبنای حداقل مربعات برای معادلات ماتریسی جفت شده کلی و معادلات ماتریسی کلی داده شده است. در شاخه جبر ماتریسی، به عنوان یک روش برای به دست آوردن جواب های عددی معادلات ماتریسی، الگوریتم های تکراری توجه بسیاری از محققان را جلب کرده اند. ایده اصلی راجع به ماتریس مجهولی است که به عنوان پارامترهای یک دستگاه که حل شده است، مورد شناسایی قرار گرفته است. در ساختار الگوریتم های تکراری ماتریس های مجهول جایگزین تخمین هایشان می شوند. با به کاربردن قاعده شناسایی سلسله مراتبی چند روش شناسایی جدید پیشنهاد شده است. ایده اصلی قاعده شناسایی برای به دست آوردن جواب حداقل مربعات معادلات ماتریسی حقیقی axb=f وaxb+cxd=f به کاربرده شده است. ثابت شده که جواب های تکراری همیشه به جواب دقیق به ازای هر مقدار شروع همگرایند زمانی که عامل همگرایی شرط کافی داده شده را ادا کند. در تحلیل پایداری دستگاه های کنترل، اغلب نیاز است معادلات ماتریسی (جفت شده) به شکل های زیر حل شوند معادلات سیلوستر زمان پیوسته معادلات سیلوستر زمان گسسته معادلات ماتریسی سیلوستر تعمیم یافته معادلات ماتریسی سیلوستر جفت شده برمبنای قاعده شناسایی سلسله مراتبی الگوریتم های جدید و کارا از نظر محاسباتی برای پیدا کردن جواب های تکراری معادلات ماتریسی تهیه شده اند که شامل معادلات ماتریسی لیاپانو و معادلات ماتریسی سیلوستر به عنوان حالت های خاص هستند. سپس روش های جدید توسعه داده شده اند تا معادلات ماتریسی اصلی و معادلات ماتریسی مختلط را حل کنند. این پایان نامه شامل چهار فصل اصلی است. در فصل اول تعاریف و قضایایی که در فصول بعدی لازم است، بیان شده است. در فصل دوم معادلات ماتریسی جفت شده که در بسیاری از دستگاه ها و کاربردهای کنترل با آن ها مواجه می شویم، مطالعه شده اند. ابتدا تکرارهای ژاکوبی و گاوس سایدل توسیع داده شده و یک خانواده بزرگ از روش های تکراری معرفی شده است. سپس معادلات سیلوستر به معادلات ماتریسی جفت شده کلی تعمیم داده شده اند. در فصل سوم با استفاده از تکرارهای ژاکوبی و گاوس سایدل برای ax=b که در فصل قبل توسعه داده شده اند، جواب های تکراری معادلات ماتریسی axb=f و معادلات ماتریسی سیلوستر تعمیم یافته axb+cxd=f مطالعه شده و الگوریتم های تکراری برمبنای گرادیان و حداقل مربعات برای جواب معرفی شده است. در فصل چهارم جواب های تکراری یک دسته از معادلات ماتریسی مختلط بررسی شده و با به کاربردن قاعده شناسایی سلسله مراتبی یک الگوریتم تکراری برای حل این دسته از معادلات ماتریسی ساخته شده است.