نام پژوهشگر: مهسا نادی فر
مهسا نادی فر افشین فلاح
در این پایان نامه تحلیل رگرسیونی داده های شمارشی با متغیر پاسخ آمیخته مدنظر قرار گرفته است. در تحلیل داده های شمارشی، تحلیل رگرسیون پواسون یکی از تکنیک های بسیار پرکاربرد می باشد. یکی از مفروضات اصلی مدل رگرسیون پواسون برابری میانگین و واریانس متغیر پاسخ است. اما در بسیاری از کاربردها مشاهدات پاسخ بیش پراکنده اند و به همین دلیل برازش مدل رگرسیون پواسون به داده ها مناسب نیست. در این موارد می توان از مدل رگرسیون پواسون آمیخته به عنوان مدلی جایگزین استفاده نمود. از این رو، مدل رگرسیون پواسون آمیخته ی متناهی یک متغیره از دو دیدگاه بسامدی و بیزی مورد بررسی قرار گرفته است. سپس کاربرد مدل رگرسیون پواسون آمیخته ی متناهی در تحلیل رگرسیونی داده های پیوندیافته شرح داده شده است. وجود صفرهای بیش از حد در مشاهدات پاسخ یکی دیگر از مشکلات در تحلیل داد ه های شمارشی است، که می توان با استفاده از توزیع پواسون دومتغیره برآن غلبه کرد. بنا بر این تحلیل رگرسیونی با متغیر پاسخ دارای توزیع پواسون آمیخته دو متغیره در رهیافت بیزی مد نظر قرار گرفته است. نشان داده شده که به دلیل شکل پیچیده تابع درستنمایی مبتنی بر توزیع پواسون دو متغیره، توزیع پسین فاقد شکل بسته بوده و بسیار پیچیده است. از این رو، توزیع های پسین شرطی کامل پارامترها محاسبه و الگوریتم گیبز برای نمونه گیری از توزیع پسین ارائه شده است. به منظور ارزیابی مدل بیزی پیشنهادی و مقایسه ی آن با همتای بسامدی، مطالعه ای شبیه سازی انجام شده است. هم چنین نحوه کاربست رهیافت بیزی پیشنهادی در قالب یک مثال کاربردی در زمینه ی تحلیل داده های سرطان معده و روده ی بزرگ شرح داده شده و کارایی آن مورد ارزیابی قرار گرفته است. نتایج حاکی از کارایی مطلوب تر مدل بیزی پیشنهادی نسبت به مدل بسامدی در برازش مدل است.