نام پژوهشگر: دریا یاری

مقایسه مدلهای شبکه عصبی مصنوعی و سیستم استنتاج فازی در پیشبینی میزان بارندگی استان کردستان
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه زابل - دانشکده کشاورزی و منابع طبیعی 1393
  دریا یاری   محمد نهتانی

پدیده بارش تابع عوامل زیادی می باشد که پیش بینی آن به روش های معمول آماری از دقت کمی برخوردار است. پیش بینی بارش با استفاده از شبکه عصبی مصنوعی و سیستم استنتاج فازی در سال های اخیر، توجه زیادی معطوف شده است. استان کردستان با مساحتی حدود 28203 کیلومتر مربع بین 34 درجه و 45 دقیقه تا 36 درجه و 28 دقیقه عرض شمالی و 42 درجه و 31 دقیقه تا 48 درجه و 16 دقیقه طول شرقی به دلیل ریزش جوی زیاد یکی از پرآب ترین استان های کشور به شمار می رود. در این پژوهش کارایی مدل شبکه عصبی مصنوعی و سیستم استنتاج فازی براساس داده های ماهانه دوره آماری موجود که 70 درصد برای آموزش و 30 درصد آن برای آزمایش از مدل شبکه عصبی پرسپترون چند لایه با تابع محرک تاتژانت سیگموئید و الگوریتم لورنبرگ-مارکوات استفاده شده است. در ادامه با توجه به معیارهای آماری ضریب همبستگی و ضریب ناش بین داده های مشاهداتی و پیش بینی شده بطور مقایسه ای مورد ارزیابی قرار گرفته است که رطوبت نسبی و دما در تمامی ایستگاه ها بیشترین تأثیر را داشته است. یافته ها بیانگر عملکرد بالاتر شبکه عصبی مصنوعی نسبت به سیستم استنتاج فازی در پیش بینی بارش استان می باشد.