نام پژوهشگر: مینا واقف
مینا واقف اسدالله رضوی
در این پایان نامه گروه لی پوچ توان (n,لاندا) همراه با یک ساختار هندسی (مانند همتافته، مختلط با تقریبا مختلط) در نظر گرفته می شود و بر آن متریک های مینیمال تعریف می شود. متریک مینیمال یک متریک ناوردای چپ سازگار با لاندا است که نرم تانسور ریچی ناوردا نسبت به این متریک در بین همه متریک های سازگار با خمیدگی عددی یکسان مینیمم است. ثابت می شود که متریک مینیمال در صورت وجود با تقریب یکریختی یکتاست. سپس نشان داده می شود که در واقع این متریک ها حل سولیتون برای شارریچی ناوردا هستند و نقاط بحرانی تابعی خاص می باشند. در این راه کروشه های لی به جای ضرب های داخلی به کار برده می شوند. ابزار اصلی، نگاشت گشتاور برای عمل یک گروه لی تحویلی روی مجموعه جبری همه جبرهای لی است که نشان خواهیم داد با عملگر ریچی یکی می شود و از این طریق می توانیم از نتایج قوی قضیه ناوردایی هندسی استفاده کنیم.