نام پژوهشگر: سامان بابایی کفاکی

کاربرد شبکه های عصبی در حل مسائل برنامه ریزی خطی - فازی
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی 1392
  شهاب الدین حیدر مافی   محمد رضا صافی

چکیده در دنیای واقعی اکثر مسائل به طور ذاتی یا غیر ذاتی با عدم قطعیت مرتبط هستند. برخی از این مسائل به صورت مسائل فازی یا انواع دیگری از مسائل مدل سازی غیرقطعی فرمول بندی می شوند. در این )fmolp پایان نامه تکنیک شبکه های عصبی برای حل مسائل برنامه ریزی خطی چندهدفی فازی ( به کار رفته است و روش هایی برای حل این گونه مسائل معرفی گردیده است. برای درک بهتر کاربرد شبکه های عصبی در حل مسائل برنامه ریزی خطی چندهدفی فازی، ابتدا برخی مفاهیم پایه ای در -برش، مسئله را به حالت قطعی تبدیل رابطه با این موضوع را ذکر می نماییم. سپسبه کمک تکنیک می کنیم و در نهایت با استفاده از روش جریمه ای مسئله مقید را با یک مسئله نامقید، که به کمک تکنیک شبکه های عصبی حل می شود، تقریب می زنیم.

یک روش شبه نیوتن اصلاح شده برای بهینه سازی ساخت یافته با اطلاعات جزیی از ماتریس هسی
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1393
  اسماعیل داودی نیا   سامان بابایی کفاکی

در روش شبه نیوتن اصلاح شده برای بهینه سازی ساخت یافته با اطلاعات جزیی از ماتریس هسی بر خلاف روش هایی که فقط از گرادیان ها در دو تکرار آخر استفاده می کنند، هم از مقادیر تابع و هم از گرادیان ها در دو تکرار آخر استفاده می شود. این روش دارای همگرایی موضعی و زبر خطی است. نتایج حاصل از این روش در مقایسه با روش های مطرح شده قبلی امیدوار کننده تر است.

الگوریتم نقطه مبدأیی برای مسائل غیر محدب روی منیفلدهای هادامارد
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی 1393
  محمد رضا میرزایی موحد   مهدی علی اکبری

در این پایان نامه، الگوریتم نقطه مبدأیی را برای حل مسائل مینیمم سازی ای روی منیفلد های هادامارد توسیع می دهیم که توابع هدف آن ها دارای شرایط خاصی از جمله نا محدب، موضعا لیپ شیتز و یا شبه محدب می باشند. برای رسیدن به این هدف از مفهوم زیر دیفرانسیل ها روی منیفلد های هادامارد استفاده می کنیم و در هر حالت فرض هایی اضافه برای تابع هدف در نظر می گیریم. بعلاوه, ثابت می کنیم که دنباله تولید شده توسط الگوریتم نقطه مبدأیی به جواب بهینه همگراست که همان نقطه بحرانی تابع هدف است.

الگوریتم گرادیان مزدوج مقیاس بندی شده برای بهینه سازی نامقید
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی 1393
  پریسا ابوالقاسمی   سامان بابایی کفاکی

در این پایان نامه، یک روش گرادیان مزدوج مقیاس بندی شده مورد بررسی قرار می گیرد. این روش بر اساس شرط سکانت و شرایط جستجوی خطی تقریبی ولف پایه گذاری شده است و در واقع نمونه اصلاح شده بهترین روش گرادیان مزدوج طیفی موسوم به الگوریتمscg ارائه شده توسط بیرجین و مارتینز،است. بنای این اصلاح بر اساس روش بهنگامسازی شبه نیوتن bfgs است. در طرح محاسباتی این روش از فرایند شروع مجدد بیل-پاول استفاده می شود. در این روش پارامتر مقیاس بندی با استفاده از اطلاعات دو تکرار قبلی به دست می آید. در شرایط مناسب برای توابع قویاً محدب الگوریتم همگرای سراسری است. نتایج عددی مقدماتی نشان می دهند که روش گرادیان مزدوج مقیاس بندی شده ارائه ای از روش گرادیان مزدوج طیفی شده به طور قابل ملاحظه scg کاراتر است .

معیار نیم واریانس به عنوان اندازه ریسک برای انتخاب پرتفوی
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1393
  مهدیه دوست محمدی   کاظم نوری هفت چشمه

هدف از این پایاننامه بهینهسازی پرتفوی با ماکزیمم کردن بازده میانگین هندسی، با در نظر گرفتن نیم- واریانسبه عنوان اندازه ریسکمیباشد. ما ابتدا به معرفی معیارهای اندازهگیری ریسکپرداخته و سپس معیار نیمواریانس را بهعنوان اندازه ریسک معرفی و تعریف کرده و با مدلهای دیگر مقایسه میکنیم. همچنین معیارهای دیگری را که نیز میتوان جایگزین آن کرد بهطور اجمالی توضیح دادهایم. شرایط بهینگی و حل روش با شبیهسازی مونتکارلو ارائه شده است و یک مثال عددی برای نشان دادن میزان کارآمد بودن مدل، آورده شده است.

بیشترین تکرار ریشه چندجمله ای های جورسازی در یکدرخت و مینیمم پوشش مسیر
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1393
  مریم همتی   سعید محمدیان

در این پایان نامه ریشه های چندجمله ای جورسازی و نیز رابطه جورسازی و احاطه گری را بررسی می کنیم، که در فصل اول تعاریف اولیه را ارائه شده است.در فصل دوم شرط لازم و کافی برای این که تکرار ریشه های چندجمله ای جورسازی از یک درخت برابر مینیمم تعداد مسیرهای رأس مجزا، که برای پوشاندن مجموعه رئوس نیاز داریم، تعیین می کنیم. در فصل سوم، چند جمله ای جورسازی و شاخص هوسویا گراف زیربخش g بیان و اثبات می شود.

دوگان مسئله برنامه ریزی کسری خطی چند هدفی
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1393
  مریم دهینی   محمد رضا صافی

این پایان نامه شامل سه فصل است در فصل اول برنامه ریزی خطی و دوگان آن را مرور می کنیم و سپس به معرفی مسئله کسری خطی تک هدفی و مسئله کسری خطی چند هدفی می پردازیم و برای هر کدام یک روش حل ارائه می دهیم. در فصل دوم چندین روش برای بدست آوردن دوگان یک مسئله کسری خطی تک هدفی معرفی می کنیم و قضایای دوگان را به اثبات می رسانیم.در فصل آخر با استفاده از لم فارکاس یک مسئله دوگان برای مسئله کسری خطی چند هدفی در دو حالت خطی و غیر خطی بیان می کنیم.

روشهای گرادیان مزدوج غیرخطی چندگامی برای حل مسائل مینیمم سازی نامقید
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده علوم پایه 1393
  کلثوم حسین پور سلوکلائی   سامان بابایی کفاکی

به دلیل عدم ذخیره سازی ماتریسی روشهای گرادیانهای مزدوج به روشهای جذاب برای حل مسائل بهینه سازی نامقید با مقیاس بزرگ تبدیل شده اند اخیرا به منظور رسیدن به همگرایی سریع دای و لیائو یک روش گرادیانهای مزدوج بر اساس شرط سکانت ارائه کردند و به دنبال آن یابه و تاکانو روش گرادیانهای مزدوج دیگری را بر اساس یک شرط سکانت اصلاح شده پیشنهاد دادند در این پایان نامه بر اساس شرط سکانت چندگامی ارائه شده توسط فرد و مقرابی دو روش گرادیانهای مزدوج دیگر ارائه میشوند تحت شرایط مناسب همگرایی روشها نیز ثابت میشود همچنین به مقایسه نتایج عددی حاصل از این روشها و برخی روشهای قبلا ارائه شده پرداخته میشود

بررسی برخی از روش های گرادیان مزدوج فلچر-ریوز اصلاح شده کاهشی
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی 1394
  شایسته مرادی   سامان بابایی کفاکی

بهینه سازی را می توان علم مشخص نمودن بهترین جواب برای یک مسئله که به صورت ریاضی تعریف شده است، بیان کرد. یکی از شاخه های اساسی بهینه سازی، بهینه سازی نامقید است. به طور کلی برای نیاز است. اما یافتن ریشه های یک تابع برداری f حل مسئله بهینه سازی به یافتن ریشه های تابع گرادیان مشکل و در مسائل با مقیاس بزرگ عملاً غیر ممکن است. برای رهایی از این مشکلات و یافتن جواب مورد نظر اغلب از روش های تکراری استفاده می شود. از جمله این روش های تکراری روش های گرادیان، نیوتن، شبه نیوتن، گرادیان مزدوج و ... می باشد. روش های گرادیان مزدوج به دلیل عدم نیاز به محاسبه و ذخیره سازی ماتریسهسی به عنوان روش هایی موثر برای حل مسائل غیر خطی در مقیاسبزرگ استفاده می شوند.

ریشه های چند جمله ای های رنگی یک حلقه ی ‎4‎ خوشه ای
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده علوم پایه 1394
  حمیدرضا فراهانی   سعید محمدیان سمنانی

فرض کنیم a، b، c و d چهار عدد صحیح مثبت باشد و "k" _"a" ، "k" _"b" ، "k" _"c" و "k" _"d" گراف های کامل به ترتیب با a، b، c و d راس باشند اگر هر راس "k" _"a" و "k" _"c" را با هر راس از "k" _"b" و "k" _"d" مجاور کنیم گرافی شبیه به گراف شکل مقابل می شود. که آن را با نماد "r" _"a,b,c,d " نمایش می دهیم.