نام پژوهشگر: ندا عبداللهی
ندا عبداللهی صدیقه جاهدی
معادلات دیفرانسیل با مشتقات جزیی کاربرد های مهمی در زمینه های مختلف علوم و مهندسی مانند مکانیک سیالات، ترمودینامیک، انتقال گرما و فیزیک دارند. این معادلات اغلب غیرخطی هستند و یافتن جواب تحلیلی آن ها دشوار و در بعضی از موارد غیرممکن است به همین دلیل در سال های اخیر تلاش های گسترده ای به منظور توسعه روش های تحلیلی و عددی برای حل این معادلات صورت گرفته است. در این پایان نامه ابتدا به معرفی معادله ساین گوردن به عنوان یک معادله ی غیرخطی و سالیتونی پرداخته سپس شرح مختصری از تاریخچه و پیدایش معادله را ذکر می کنیم. هم چنین دسته ای از جواب های این معادله را که جواب سالیتونی نام دارند، بررسی می کنیم. در چند فصل از این پایان نامه به مطالعه ی این معادله و مقایسه ی بین جواب های بدست آمده برای آن با استفاده از چند روش تحلیلی مانند تداخلی هموتوپی، تحلیلی هموتوپی، تکرار تغییراتی، تجزیه آدومیان، تبدیل الزاکی هموتوپی و هموتوپی مجانبی بهینه پرداختیم. در پایان به روش های تفاضلات متناهی پرداخته و با استفاده از دو روش ftcs و ctcs به بررسی و یافتن جواب های عددی معادله می پردازیم.