نام پژوهشگر: طوبی پارسا

قاب ها و پایه های ریس تعمیم یافته
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1392
  طوبی پارسا   فرید بهرامی

همانطور که می دانیم پایه ی هیلبرتی یکی از مفاهیم بسیار مهم در یک فضای هیلبرت است. در عمل بدست آوردن چنین پایه ای برای یک فضای داده شده می تواند بسیار دشوار و یا حتی در برخی موارد غیر عملی باشد. مفهوم قاب یکی از مفاهیمی است که تا حد زیادی نیاز ما را به تعیین پایه هیلبرتی مرتفع می سازد. این مفهوم برای اولین بار در سال 1952 توسط دافین و شفر مطرح شد و آنها از آن به عنوان ابزاری در مطالعه سری های فوریه غیرهارمونیکی استفاده کردند. پس از سالها وقفه، در سال 1985 که مصادف با دوران اوج نظریه موجک بود، دابیچیز، گراسمن و مایر مشاهده کردند می توانند از قابها در بسط سریهای تابعی در l^2 (r) استفاده کنند. این امر به بسط با استفاده از پایه های هیلبرتی بسیار شباهت داشت. این افراد بدین گونه مفهوم قاب را دوباره معرفی کردند و بدین ترتیب مطالعه گسترده ای در مورد نظریه قابها شروع شد. با توجه به خاصیت قاب، این مفهوم کاربرد فراوانی در زمینه پردازش سیگنال ، پردازش تصویر، تراکم داده ها ،نظریه نمونه گیری و غیره دارد. مفهوم قاب، تعمیمهای متفاوتی چون شبه تصویرگر کراندار، قاب زیرفضا، شبه قاب، قابهای مایل و قاب خارجی دارد. یکی از مهمترین تعمیمهای این مفهوم ، قاب تعمیم یافته است که به نوعی سایر تعمیمهای فوق را در بر می گیرد. این تعمیم برای اولین بار در سال 2006 توسط سان مطرح شده است. این پایان نامه به صورت زیر سازمان یافته است. در فصل دوم، مروری بر فضای هیلبرت و عملگرهای خطی خواهیم داشت. در فصل سوم، مفهوم قاب را تعریف می کنیم. در ادامه عملگر قاب را تعریف و به خصوصیات آن می پردازیم. همچنین نشان می دهیم که یک قاب چگونه فضای خود را بازسازی می کند. در بخش بعدی این فصل، پایه ریس را تعریف و خصوصیات آن را بیان می کنیم. در فصل چهارم، قاب تعمیم یافته را تعریف می کنیم. در این فصل نشان می دهیم که چگونه تعمیمهای متفاوتی که تاکنون برای قاب مطرح شده اند؛تحت قاب تعمیم یافته که در اینجا مطرح می شود، قرار می گیرند. سپس عملگر قاب تعمیم یافته را تعریف می کنیم. در بخش بعدی این فصل، دنباله بسل تعمیم یافته، پایه ریس تعمیم یافته و پایه یکا متعامد تعیم یافته را تعریف می کنیم. همچنین در قضیه ای بسیار مهم شرایط معادلی برای قاب، دنباله بسل، پایه ریس و پایه یکا متعامد و تعمیمهایشان ارائه می دهیم.مشاهده می کنیم که با وجود شباهتهای بسیار، تمام خاصیتهای قاب تعمیم یافته و پایه ریس تعمیم یافته، به ترتیب، مشابه با قاب و پایه ریس نیست.