نام پژوهشگر: سیّد محمود شیخ الاسلامی
مرضیه سرودی جعفر امجدی
رأس x از گراف g را رأس هم احاطه شده می نامیم اگر به ازای رأس y ،همسایگی بست? y زیرمجموع? همسایگی بست? x باشد و گراف g هم پوشش ناپذیر نامیده می شود اگر فاقد یال بوده و یا شامل یک رأس هم احاطه شده مانندx باشد بطوریکه g-x هم پوشش ناپذیر است. نشان می دهیم که گرافهای تجزیه پذیر رأسی فاقد- ( c4,c5)، هم پوشش ناپذیر هستند و ثابت می کنیم اگر g یک گراف خوش پوشش فاقد- (c4,c5,c7 )، باشد آنگاه تجزیه پذیر رأسی بودن و هم پوشش ناپذیری و کوهن- مکالی بودن برای گراف g هم ارزند که بسیاری از نتایج اولیه روی گرافهای دوبخشی و وتری و خیلی خوش پوشش را کامل و یکپارچه می سازد. بعلاوه، ما نظم کستلنومامفورد، (reg(g چنین گرافهایی را مورد مطالعه قرار داده و نشان می دهیم که وقتی g یک گراف تجزیه پذیر رأسی و فاقد- ( c4, c5 ) است آنگاه (reg( g) = im(g . همچنین ثابت می کنیم اگر g گرافی باشد که im(g ) = reg(g ) = m ، آنگاه g یک گراف هم پوشش ناپذیر است که (im(g نشان دهنده عدد جورسازی القایی از گراف g و m(g ) ، عدد جورسازی گراف g است. به ازای هر1 < n، گرافهای همبند gn را چنان می سازیم که در رابط? m(gn ) > cochord(gn ) = reg(gn ) +n صدق می کنند که در آن cochord( g عدد پوششی گراف g است.