نام پژوهشگر: مهرزاد محرری
مهرزاد محرری حمید رضا مرزبان
این پایان نامه از چهار قسمت تشکیل شده است. در قسمت اول به معرفی حسابان کسری می پردازیم. در قسمت دوم توابع متعامد و انواع آن را معرفی کرده و تعاریف توابع بلاک پالس، چند جمله ای های لژاندر و ترکیب توابع بلاک پالس و چند جمله ای های لژاندر را بیان کرده و بعضی از خواص آن ها و همچین نحوه ی تقریب زدن توابع با استفاده از آن ها را بررسی می کنیم. در ادامه انواع ماتریس های عملیاتی مرتبه ی صحیح را تعریف کرده و برای توابع بلاک پالس، چند جمله ای های لژاندر و ترکیب آن ها انواع ماتریس های عملیاتی را به دست می آوریم. در قسمت سوم با استفاده از دو رویکرد ماتریس عملیاتی انتگرال مرتبه ی کسری ترکیب توابع بلاک پالس و چند جمله ای های لژاندر را به دست می آوریم. در ادامه برای به دست آوردن ماتریس عملیاتی مشتق مرتبه ی کسری توابع ترکیبی از تعریف مشتق مرتبه ی کسری کاپوتو برای ترکیب توابع بلاک پالس و چند جمله ای های لژاندر استفاده کرده و ماتریس عملیاتی مشتق مرتبه ی کسری توابع ترکیبی را به دست می آوریم. در قسمت چهارم روش توابع متعامد برای توابع ترکیبی را برای حل دو نوع از معادلات دیفرانسیل با مشتقات مرتبه ی کسری بیان خواهیم کرد. ابتدا معادلات دیفرانسیل خطی با چندین مشتق مرتبه ی کسری را در نظر گرفته و با استفاده از روش تاو و روش نقاط ترکیبی و همچنین ماتریس عملیاتی مشتق مرتبه ی کسری توابع ترکیبی به حل آن ها خواهیم پرداخت. سپس معادلات دیفرانسیل غیر خطی با چندین مشتق مرتبه ی کسری را در نظر گرفته و با استفاده از روش نقاط ترکیبی و ماتریس عملیاتی مشتق مرتبه ی کسری توابع ترکیبی به حل این دسته از معادلات می پردازیم. در انتها با استفاده از چندین مثال دقت و کارایی روش توابع متعامد برای توابع ترکیبی، در حل معادلات دیفرانسیل با چندین مشتق مرتبه ی کسری نشان داده می شود.