نام پژوهشگر: محدثه رستمانی

عناصر فردهلم در جبرهای باناخ و نگاشت های حافظ آنها
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده ریاضی 1392
  محدثه رستمانی   شیرین حجازیان

نظریه فردهلم را نسبت به هر ایدآل دلخواه روی جبرهای باناخ یکدار گسترش می دهیم. اگر ‎$ heta:mt alongrightarrowmt b$‎ نگاشت خطی و در حد ایدآل ‏غیراساسی پوشا باشد، در حالت هایی که ‎$mt c_r(mt a)$‎ یا ‎$mt c_r(mt b)$‎ جبر باناخ جابه جایی است یا ‎$mt a$‎ و ‎$mt b$‎، ‎$ce$-‎جبرهای یکدار یا ‎$mt a$‎ یک ‎$ce$-‎جبر یکدار از رتبه ی حقیقی صفر و ‎$mt b$‎ یک جبر باناخ یکدار باشد به بیان شرایطی می پردازیم که معادل با حفظ شدن عناصر فردهلم و نیم فردهلم (راست، چپ) توسط ‎$ heta$‎ ‏در دو جهت می باشد. همچنین نتایجی را در مورد نگاشت های حافظ انواع ضرب صفر بیان کرده و نشان می دهیم اگر ‎$ heta$‎ این نوع ضرب های صفر را( به طور اساسی) حفظ کند، آن گاه مجموعه عناصر نیم فردهلم و فردهلم نسبی توسط ‎$ heta$‎ در دو جهت حفظ می شود. ‎ همچنین نگاشت های فشرده ی طیفی را معرفی کرده و شرایطی را بیان می کنیم که این نگاشت ها تبدیل به همریختی جردن شده و ضرب های صفر و عناصر فردهلم را حفظ می کنند