نام پژوهشگر: آسیه صادقی هفشجانی
آسیه صادقی هفشجانی علیرضا امینی هرندی
در این پایان نامه، ما نخست مفاهیم mt-تابع،$tau$-تابع و$0^tau$-متر را معرفی نموده، سپس با به کارگیری این مفاهیم، قضایای نقطه ثابت جدیدی برای نگاشت های انقباضی مجموعه-مقدار غیرخطی اثبات می کنیم. سپس رده ی نگاشت های مستعد مجموعه-مقدار را معرفی نموده و قضایای نقطه ثابت جدیدی که گسترش هایی از قضیه نقطه ثابت کنان و قضیه نقطه ثابت جاترجی برای نگاشت های انقباضی مجموعه-مقدار غیرخطی در فضاهای متری کامل هستند، برای چنین نگاشت هایی اثبات می کنیم. همچنین، مفهوم انقباض های جهت پنهان در فضاهای متری را که در واقع گسترشی از نگاشت های کلاسیک است، معرفی می کنیم. وجود خاصیت نقطه ثابت تقریبی تعمیم یافته برای انواع مختلف نگاشت های انقباضی غیرخطی نیز نشان داده می شود. سپس با اثبات قضایای نقطه ثابت جدید برای نگاشت های انقباضی جهت پنهان، نشان می دهیم نتایج شناخته شده ی قبلی را می توان بهبود بخشید و گسترش داد. نتایج جدید ما، پاسخی جزئی به مسئله ی باز رایش می دهد و گسترش هایی جدید از قضیه نقطه ثابت برایند-برایند و قضیه نقطه ثابت میزوگوچی-تاکاهاشی به دست می دهد. در نهایت چند قضیه برای وجود نقطه انطباق و نقطه ثابت برای نگاشت های مجموعه-مقدار در فضاهای متری کامل اثبات می کنیم.