نام پژوهشگر: زهرا رحمانی‌فرد

گراف کلاس های هم ارزی مقصوم علیه های صفر
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز - دانشکده ریاضی 1391
  زهرا رحمانی فرد   بابک امینی

مقدمه بک اولین کسی بود که در سال 1988 مفهوم گراف مقسوم‎علیه صفر یک حلقه‏ی r را تحت عنوان رنگ‏آمیزی رئوس بیان کرد. او اعضای حلقه‎ی r را به عنوان مجموعه رئوس یک گراف در نظر گرفت. همچنین دو عضو متمایز x,y?r با هم مجاورند اگر و تنها اگر xy=0. بک عدد رنگی (کمترین تعداد رنگی که می‎توان با آن اعضای حلقه‎ی r را رنگ‎آمیزی کرد، در حالتی که دو رأس مجاور دارای رنگ‎های متفاوتی باشند.) و خوشه (کوچکترین زیرگراف کامل از یک گراف) را برای چنین گراف‎هایی تعریف کرد. همچنین حلقه‎های با عدد رنگی متناهی را حلقه‏های رنگی (coloring) نامید. او توانست ویژگی‎های جالبی را در این زمینه بیان کند از جمله: یک حلقه چه زمانی رنگی خواهد بود، شرط زنجیر صعودی بر روی پوچساز‏های حلقه‎های رنگی، بسته بودن خانواده‎ی حلقه‎های رنگی نسبت به عمل‏های به خصوصی و . . . مطالعه‎ی گراف مقسوم‎علیه صفر یک حلقه‎ی r توسط اندرسون و نصیر ادامه یافت. آنها تعریفی مشابه بک ارائه کردند و گراف مقسوم‎علیه صفر را با ?_0 (r) نشان دادند. در ?_0 (r)، رأس صفر با تمامی رئوس مجاور است اما مابقی رئوس که مقسوم‎علیه صفر نباشند، تنها با صفر مجاورند. اندرسون و لیوینگستون تعریفی متفاوت از گراف مقسوم‏علیه صفر که با ?(r) نشان داده می‎شود، ارائه کردند. لازم به ذکر است این تعریف ساختار مقسوم‏علیه‎های صفر حلقه‎ی r را بهتر از تعریف قبل نشان می‏داد. آن‎ها ویژگی‏های بسیار جالبی از ?(r) را بیان کردند. از جمله: همبند بودن گراف، کران بالای 3 برای قطر آن، چه زمانی ?(r) یک گراف کامل یا ستاره‏ای است و . . . افراد دیگری نیز گراف مقسوم‎علیه صفر را مورد بررسی قرار دادند. در سال 2002 اکبری ، میمنی و یاسمی به این سوال جالب اندرسون، لیوینگستون، لیو و فرازیر پاسخ دادند که برای کدام حلقه‎های جابجایی متناهی r، ?(r) یک گراف مسطح است. آنها نشان دادند که اگر r حلقه‎ی موضعی با حداقل 33 عضو باشد و ?(r) گراف غیر تهی بوده، آن‎گاه ?(r) یک گراف مسطح نیست. همچنین به توصیف حلقه‏هایی که گراف مقسوم‎علیه صفرشان، کامل r بخشی است پرداختند. آن‎ها حلقه‎هایی که گراف مقسوم‎علیه صفرشان کامل p بخشی است (p عدد اول فرد) را نیز طبقه‎بندی کردند. در سال 2003 ردموند گراف مقسوم‎علیه صفر یک حلقه‎ی r را بر پایه‎ی یک ایده‎آل از آن حلقه تعریف کرد. او برای حلقه‏ی جابجایی r و ایده‎آل i از آن، گراف ?_i (r) را این چنین تعریف کرد: گراف غیر‏جهت دار ?_i (r) با مجموعه رئوس {x?r?i?xy?i بطوریکه y?r?i باشد داشته وجود } و دو رأس متمایز x,y با هم مجاورند اگر و تنها اگر xy?i. واضح است اگر i=(0)، آن‏گاه ?_i (r)=?(r). او توانست با ایده‏ای جالب گراف ?_i (r) را برای حلقه‏های ساده به‏راحتی رسم کند. همچنین در مورد همبندی، عدد خوشه‏ای، کمر گراف و مسطح بودن گراف ?_i (r) مطالبی را بیان کند. مجددا در سال 2003 اکبری و محمدیان به مطالعه و بررسی گراف مقسوم‏علیه صفر پرداختند. آن‏ها نشان دادند که برای هر حلقه‏ی جابجایی و متناهی r، عدد رنگی مربوط به یال‏ها برابر با درجه‏ی ماکسیمال r در گراف ?(r) است بجز حالتی که ?(r)، گراف کامل از مرتبه‏ی فرد باشد. همچنین با تعمیم قضیه‎ی (?(r)??(s) اگر و تنها اگر r?s، بطوریکه rو s حلقه‎های متناهی کاهش یافته بوده و میدان نیز نباشند.) موفق به بیان قضیه‏ی زیر شدند: اگر r حلقه‏ی متناهی کاهش یافته بوده بطوریکه با z_6 یا? z?_2×z_2 یکریخت نباشد و s حلقه‏ای دلخواه بطوریکه ?(r)??(s)، آن‎گاه r?s.