نام پژوهشگر: مریم زمانیان نجف آبادی

حل عددی معادلات انتگرال با استفاده از روش گالرکین
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1391
  مریم زمانیان نجف آبادی   یداله اردوخانی

چکیده پایان نامه هدف اصلی در این رساله حل معادلات انتگرال فردهلم به شکل زیر با استفاده از روش گالرکین می باشد: y(x)=f(x)+?_0^1??k(x,t) ?[y(t)]?^p dt, 0<x<1? که در آن y تابعی مجهول و k تابعی معلوم در l^2 ([0,1]×[0,1]) و f تابعی معلوم در l^2 ([0,1]) می باشد و p یک عدد صحیح مثبت است . با استفاده از روش گالرکین بر پایه موجک لژاندر،جواب را به صورت c^t ? (x) تقریب می زنیم که در آن c بردار مجهول و? (x) بردار پایه ی موجک لژاندر می باشد. در این روش با استفاده از پایه موجک لژاندر و خواص آن،مسأله تبدیل به یک دستگاه غیرخطی می شود که از حل آن جواب معادله انتگرال غیرخطی تقریب زده می شود. برای این منظور ابتدا روش را برای معادله انتگرال خطی فردهلم و ولترای نوع اول، معادله انتگرال خطی ولترا -فردهلم نوع دوم و در انتها معادله ولترای غیرخطی نوع دوم به ترتیب به صورت زیر به کار می بریم: f(x)=?_0^1??k(x,t)y[t]dt, ? f(x)=?_0^x?k(x,t)y[t]dt, y(x)=f(x)+?_0^1??k(x,t)y[t]dt+?_0^x?k(x,t)y[t]dt,? y(x)=f(x)+?_0^x??k(x,t) ?[y(t)]?^p dt, 0<x<1.? و نتایج کامپیوتری حاصل از محاسبات را بررسی خواهیم نمود .