نام پژوهشگر: مریم زمانیان نجف آبادی
مریم زمانیان نجف آبادی یداله اردوخانی
چکیده پایان نامه هدف اصلی در این رساله حل معادلات انتگرال فردهلم به شکل زیر با استفاده از روش گالرکین می باشد: y(x)=f(x)+?_0^1??k(x,t) ?[y(t)]?^p dt, 0<x<1? که در آن y تابعی مجهول و k تابعی معلوم در l^2 ([0,1]×[0,1]) و f تابعی معلوم در l^2 ([0,1]) می باشد و p یک عدد صحیح مثبت است . با استفاده از روش گالرکین بر پایه موجک لژاندر،جواب را به صورت c^t ? (x) تقریب می زنیم که در آن c بردار مجهول و? (x) بردار پایه ی موجک لژاندر می باشد. در این روش با استفاده از پایه موجک لژاندر و خواص آن،مسأله تبدیل به یک دستگاه غیرخطی می شود که از حل آن جواب معادله انتگرال غیرخطی تقریب زده می شود. برای این منظور ابتدا روش را برای معادله انتگرال خطی فردهلم و ولترای نوع اول، معادله انتگرال خطی ولترا -فردهلم نوع دوم و در انتها معادله ولترای غیرخطی نوع دوم به ترتیب به صورت زیر به کار می بریم: f(x)=?_0^1??k(x,t)y[t]dt, ? f(x)=?_0^x?k(x,t)y[t]dt, y(x)=f(x)+?_0^1??k(x,t)y[t]dt+?_0^x?k(x,t)y[t]dt,? y(x)=f(x)+?_0^x??k(x,t) ?[y(t)]?^p dt, 0<x<1.? و نتایج کامپیوتری حاصل از محاسبات را بررسی خواهیم نمود .