نام پژوهشگر: داود طغرایی
مجید رضایی احمد رضا عظیمیان
یکی از چالش های مهم در علوم مهندسی، مسئله انتقال سیال از یک نقطه به نقطه دیگر است. در فناوری نانو نیز با توجه به کاربرد گسترده انتقال سیالات این مسئله از اهمیت بسیار بالایی برخوردار است. از طرفی ظرافت و پیچیدگی ابزار و دستگاه های ساخته شده در مقیاس نانو، استفاده از روش های متداول انتقال سیال را در این مقیاس دشوار و یا حتی غیر ممکن می سازد. چرا که این روش ها معمولاً نیاز به کارکرد قطعات متحرک دارند که تولید و مونتاژ آن ها در مقیاس نانو بسیار دشوار است و همچنین کنترل نانوجریان در این روش ها با محدودیت های زیادی همراه است. ضمن این که راندمان قطعات متحرک در نانوابزار معمولاً کمتر از حد انتظار است. بنابراین باید به دنبال روش های جایگزینی برای تولید جریان در مقیاس نانو باشیم. یکی از مهم ترین و شناخته شده ترین روش ها، استفاده از پدیده الکتروکینتیک جهت انتقال سیال است. این روش نیازی به نصب اجزای متحرک ندارد و می توان با اعمال یک میدان خارجی، محلول الکترولیت را در نانوکانال به جریان درآورد. مزیت مهم این روش، امکان کنترل دقیق جریان شکل گرفته در نانوکانال است. با توجه به اهمیت موضوع، در این پژوهش به شبیه سازی دو جریان مبتنی بر پدیده الکتروکینتیک، یعنی جریان های الکترواسموتیک و الکتروفورتیک می پردازیم. هدف پژوهش حاضر بررسی اثر پارامترهای مختلف بر رفتار این دو جریان و مطالعه رفتار جریان تلفیقی حاصل از ترکیب این دو جریان است. برای این منظور این دو جریان را با استفاده از روش دینامیک مولکولی شبیه سازی می کنیم. روش دینامیک مولکولی یک روش مبناذره است که در مقایسه با روش های مشابه خود بسیار دقیق بوده و می تواند رفتار تک تک ذرات را با استفاده از مکانیک آماری پیش بینی کند. نتایج به دست آمده در این پژوهش نشان می دهند که روش دینامیک مولکولی بر خلاف روش های مشابه، جزئیات پدیده الکتروکینتیک را به خوبی شبیه سازی می کند. در این پژوهش ابتدا به بررسی جریان الکترواسموتیک می پردازیم و اثر پارامترهایی نظیر نوع محلول الکترولیت، غلظت محلول، چگالی بار سطحی دیواره ها، قدرت میدان الکتریکی اعمال شده بر سیستم، دمای شبیه سازی، ارتفاع کانال، تراکم سطح کانال و زبری سطح دیواره ها را بر رفتار این جریان بررسی می کنیم. سپس جریان الکتروفورتیک را با اضافه نمودن ماکرویون های کروی شارژ شده با بار الکتریکی مثبت شبیه سازی می نماییم. برای شبیه سازی این جریان از دو مدل شبیه سازی ماکرویون نرم و ماکرویون سخت استفاده می کنیم و اثر بار الکتریکی ماکرویون، اندازه ماکرویون، قدرت میدان الکتریکی اعمال شده بر سیستم، و دما را بر جریان شبیه سازی شده توسط هر دو مدل بررسی می کنیم. لازم به ذکر است که در تحقیقات محققین پیشین توجه چندانی به نقش پدیده الکتروفورسیز در ایجاد جریان و انتقال سیال نشده و بیشتر به کاربردهای این پدیده در تجزیه ساختارهای یونی پرداخته شده است. در ضمن در این تحقیق می خواهیم با اضافه کردن ماکرویون ها به جریان الکترواسموتیک، خصوصیات جریان تلفیقی حاصل از ترکیب این دو جریان را بررسی کنیم. در این پژوهش نشان می دهیم که سرعت شکل گرفته در جریان تلفیقی، از مجموع سرعت های دو جریان مولد بیشتر است و این مسئله نشان می دهد که پدیده های الکترواسموسیز و الکتروفورسیز علاوه بر ایفای نقش خود در تولید جریان، نقش یکدیگر را نیز تقویت می کنند. در تحقیق پیش رو برای دست یابی به یک تحلیل منطقی از رفتار جریان های مورد بررسی، تغییرات ایجاد شده در ویژگی های ساختاری ناحیه دوگانه الکتریکی را به عنوان مهم ترین عامل در شکل گیری جریان های الکتروکینتیک مورد بررسی قرار می دهیم و کلیه تغییرات ایجاد شده در این ناحیه را با توجه به فیزیک مسئله ریشه یابی می کنیم. لازم به ذکر است که در حین شبیه سازی این جریان ها تحت شرایط متفاوت به وجود پدیده هایی نظیر وارونگی بار الکتریکی، ایجاد جریان برگشتی، و چندلایه شدن زیرلایه فشرده پی بردیم و دلیل رخ دادن این پدیده ها را در سیستم شبیه سازی بررسی کردیم.
مسلم صالحی ممبینی احمد رضا عظیمیان
امروزه شبیه سازی های رایانه ای به عنوان ابزاری مناسب در کنار فعالیت های آزمایشگاهی کمک شایانی به فهم پدیده های فیزیکی می کند. به دلیل محدودیت های آزمایشگاهی در مقیاس میکرو و نانو، علم محاسباتی نانو به عنوان مکمل علوم آزمایشگاهی، محققان را در فهم پدیده های میکرو و نانو یاری می نماید. دینامیک مولکولی یکی از دقیق ترین شبیه سازی ها در مقیاس میکرو و نانو است که روز به روز استفاده از آن بیشتر می شود. محاسبه خواص انتقالی و انتقال حرارت از پرکاربرد ترین مباحث در مقیاس میکرو و نانو هستند که روز به روز بیشتر مورد توجه قرار می گیرند. با پیشرفت نانوتکنولوژی روز به روز استفاده از وسایل نانو افزایش می یابد و انتقال حرارت نقش بسزایی در طراحی و ساخت قطعات نانو دارد. در این تحقیق ابتدا ضریب هدایت حرارتی سیال ساکن آرگون با استفاده دو روش گرین-کوبو و روش غیرتعادلی بدست آورده می شود و نتایج با نتایج تجربی موجود صحت سنجی می شوند. سپس ضریب هدایت حرارتی نانوسیال آرگون و مس به ازای چهار درصد مختلف مس دو بار محاسبه می شود با این تفاوت که در بار اول برای برهمکنش بین ذرات مس از پتانسیل eam و در بار دوم از پتانسیل لنارد جونز استفاده می شود. پس از آن انتقال حرارت در جریان پوازی و کوئت بررسی می شود. برای اینکه مطمئن شویم که انتقال حرارت به درستی محاسبه می شود ابتدا سیال ساکن آرگون را تحت شیب دمایی حل کردیم و با استفاده از انتقال حرارت محاسبه شده ضریب هدایت حرارتی آرگون را محاسبه کردیم که تطابق خوبی با نتایج تجربی بدست آمد. پس از آن در جریان پوازی انتقال حرارت سیال و نانوسیال به ازای نیروها و در صد های مختلف نانوسیال بررسی می شود. در جریان سیال و نانوسیال پوازی مشاهده شد که هرچه نیرو افزایش یابد انتقال حرارت افزایش می یابد همچنین مشاهده شد که هرچه درصد نانوسیال بیشتر شود انتقال حرارت افزایش می یابد. در جریان کوئت نیز انتقال حرارت در سیال و نانوسیال به ازای سرعت های متفاوت صفحه بالایی محاسبه شد. در جریان سیال و نانوسیال کوئت مشاهده شد که هرچه سرعت صفحه بالا افزایش یابد انتقال حرارت افزایش می یابد اما مشاهده شد که انتقال حرارت در جریان نانوسیال کمتر از جریان سیال است که به دلیل کاهش شیب سرعت در نزدیک دیواره ها است. در نهایت نیز انتقال حرارت در حالت ناپایا در جریان پوازی را محاسبه می کنیم. برای صحت کار خود ظرفیت گرمایی ویژه آرگون را محاسبه می کنیم و با نتایج تجربی صحت سنجی می کنیم. پس از آن ظرفیت گرمایی ویژه نانوسیال را نیز محاسبه می کنیم. کلیه شبیه سازی ها با نرم افزار lampps انجام شده است البته برای محاسبه توزیع دما، سرعت و مکان و جرم ذرات را از نرم افزار خروجی می گیریم و با استفاده از برنامه نویسی با کد c++ توزیع دما را محاسبه می کنیم.
محسن قربانی احمدرضا عظیمیان
پخش قطره روی سطح جامد کاربردهای زیادی دارد که از جمله ی آنها می توان به پوشش دهی سطحی توربین بخار پاشش سوخت در موتور، پیش رانشها، روکشدهی سطوح ، پاشش رنگ روی سطوح، خنک کنندگی پاششی، چاپگرهای جوهرافشان وحسگرهای زیستی اشاره کرد. امروزه شبیه سازی های رایانه ای به عنوان ابزاری مناسب در کنار فعالیت های آزمایشگاهی کمک شایانی به فهم پدیده های فیزیکی می کند. به دلیل محدودیت های آزمایشگاهی در مقیاس میکرو و نانو، علم محاسباتی نانو به عنوان مکمل علوم آزمایشگاهی، محققان را در فهم پدیده های میکرو و نانو یاری می نماید. دینامیک مولکولی یکی از دقیق ترین شبیه سازی ها در مقیاس میکرو و نانو است که روز به روز استفاده از آن بیشتر می شود.