نام پژوهشگر: اسکندر نراقی راخد
بردعددی ماتریس های پوچ توان
thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه یاسوج - دانشکده علوم پایه
1391
فاطمه لطفی محمد تقی حیدری
فاطمه لطفی محمد تقی حیدری
چکیده: ماتریس? را پوچ توان می نامیم هرگاه به ازای عددطبیعی مانند n داشته باشیم . به ازای هر ماتریس ? روی فضای هیلبرت ، شعاع عددی و برد عددی را به ترتیب صورت a^n=0 w(a)= max{ |?|:??w(a)} و w(a)={<ax,x>:x?h ,|(|x|)|=1} تعریف می کنیم. یک ماتریس پوچ توان3×3 دارای بردعددی دایره ای است اگرو فقط اگر محاسبه می شود.w(a)=?(tr(a^* a))/2 شعاع عددی آن با فرمول و ?tr(a^* a)?^2=0 یک ماتریس پوچ توان4×4 دارای بردعددی دایره ای است اگرو فقط اگر ?tr(a^* a)?^2=0 و?tr(a^* a)?^3=0 شعاع عددی آن با فرمول زیر محاسبه می شود. ?(((tr(a^* a)+?(tr(a^* a)-64det?(re(a)))))/8) اما در مورد ماتریس های پوچ توان5×5 شرایط کمی پیچیده تر است. در این پژوهش شرایطی را که یک ماتریس پوچ توان5×5دارای برد عددی دایره ای است را مورد بررسی قرار می دهیم.