نام پژوهشگر: منصور مهرمحمدی

ناورداها و قضیه ای از نوع بونه برای رویه ها در فضای چهاربعدی اقلیدسی
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1391
  منصور مهرمحمدی   اعظم اعتماد

چکیده : در این پایان نامه نظریه موضی رویه ها در فضای اقلیدسی چهاربعدی بررسی می شود. با تعریف یک نگاشت خطی روی فضای مماس رویه با نام نگاشت وینگارتن ثابت می شود که این نگاشت به تقریب علامت یک ناوردای هندسی رویه است. دترمینان و اثر ماتریس متناظر به این نگاشت خطی را به عنوان ناورداهای جدید رویه در نظر می گیریم و بر حسب این دو کمیت نقاط روی رویه به چهارنوع تخت، بیضوی، هذلولوی و سهموی تقسیم بندی می شوند. سپس رویه های مینیمال و رویه های دارای التصاق قائم تخت بر حسب این دو کمیت مشخص خواهند شد. در ادامه دو ساختار دیگر برای مشخص کردن شکل رویه ارائه شده و ارتباط نقاط تخت، بیضوی، هذلولوی و سهموی ورویه های مینیمال و رویه های دارای التصاق قائم تخت با این دو ساختار بیان می شوند. در روش اول در هر نقطه از فضای مماس رویه یک خم جبری درجه دوم با نام شاخص مماسی تعریف شده و در روش دوم در فضای قائم بر هر نقطه از رویه یک بیضی با نام بیضی انحنای قائم معرفی می شود. پس از آن در هر نقطه از رویه میدان کنجی متعامد یکه یگانه ای انتخاب شده و هشت ناوردای جدید از رویه بدست می آید. آنگاه معادلات مشتق رویه را بر حسب این ناورداها نوشته و دو رده از رویه های تخت بر حسب آنها مشخص خواهند شد. در ادامه قضیه ای ثابت می شود که بنابر آن وجود رویه یکتایی را برای مجموعه ای از ناورداها تضمین می کند. واژه های کلیدی : رویه ها در فضای چهار بعدی اقلیدسی ، نگاشت وینگارتن، بیضی انحنای قائم، قضیه اساسی از نوع بونه