نام پژوهشگر: مرضیه سادات زارع زاده ابرقویی
مرضیه سادات زارع زاده ابرقویی محمدکاظم توسلی
در این پژوهش ابتدا در فضای هیلبرت با بعد نامتناهی به معرفی حالت همدوس به عنوان کلاسیکی ترین حالت کوانتومی و حالت همدوس فوتون - افزوده به عنوان حالتی بین حالت عددی و حالت همدوس پرداخته و ویژگی های آن ها را مورد بررسی قرار داده ایم. همچنین حالت های همدوس گازیو- کلاودر، خانواده همزاد و شبه همزاد این حالت ها را به عنوان تعمیمی از حالت های همدوس معرفی کرده و برخی از ویژگی های مهم آن ها را برشمرده ایم. در ادامه، فضای هیلبرت کران دار و ساختار حالت های همدوس در این فضا مورد مطالعه قرار گرفته است. با درنظرگرفتن پتانسیل مورس به عنوان یک سامانه فیزیکی قابل حل در فضای هیلبرت کران دار، دسته جدیدی از حالت های همدوس تعمیم یافته متناظر با این پتانسیل را تولید کرده و نشان داد ه ایم که این حالت ها را می توان به عنوان یک تحقق فیزیکی از شبه همزاد حالت های همدوس گازیو - کلاودر معرفی کرد. سپس حالت های همدوس فوتون - افزوده متناظر با این پتانسیل فیزیکی خاص و برهم نهی متقارن و پادمتقارن از این حالت ها را تولید کرده ایم. در پایان، پس از مرور معیارهایی که بر غیرکلاسیکی بودن حالت ها دلالت دارند از جمله پارامتر مندل، تابع هم بستگی مرتبه دوم، چلاندگی مرتبه اول و چلاندگی مرتبه دوم، ویژگی های غیرکلاسیکی حالت های معرفی شده را بررسی کرده ایم. به علاوه، تابع هوسیمی را به عنوان یکی از توابع شبه توزیع برای حالت های حرارتی فوتون - افزوده متناظر با پتانسیل مورس نیز به دست آورده ایم