نام پژوهشگر: رضا راستی بروجنی
رضا راستی بروجنی رضا جعفری
سرطان سینه دومین علت عمده ی مرگ و میر ناشی از سرطان در زنان امروز است. تشخیص زودهنگام سرطان سینه یکی از مهم ترین عوامل در تعیین مراحل درمان برای زنان مبتلا به تومورهای بدخیم می باشد. تحقیقات نشان داده است که در بین روش های مختلف تصویربرداری پزشکی از جمله ماموگرافی، توموگرافی، سونوگرافی و غیره، تصویربرداری رزونانس مغناطیسی با کنتراست بهبودیافته، حساس ترین روش برای غربالگری زنان در معرض خطر بالا می باشد. امروزه سیستم های تشخیص به کمک کامپیوتر، برای کمک به رادیولوژیست ها و پزشکان در تشخیص زود هنگام سرطان، طراحی و استفاده می شوند. از آنجا که تشخیص بیماری های سرطان و طبقه بندی آن ها وابسته به دانش و تجربه ی پزشک است، در این پژوهش سعی شده است تا با توجه به دقت و حساسیت بالای تصویربرداری dce-mri از یک سو و مدلسازی دانش و مهارت پزشکان از سوی دیگر، یک سیستم cad بر اساس شبکه های عصبی کانولوشن سلسله مراتبی (cnn) برای ایجاد تمایز بین تومورهای بدخیم و خوش خیم در تصاویر dce-mr سینه پیشنهاد گردد. cnn یک شبکه ی سلسله مراتبی عصبی است که بر روی تصاویر دو بعدی اعمال می شود و فرآیندهای استخراج ویژگی و طبقه بندی را در یک ساختار واحد و کاملاً تطبیقی ادغام می کند. این ساختار می تواند ویژگی های دو بعدی ضروری و کلیدی را به صورت خودکار استخراج نموده و نسبت به اعوجاجات هندسی و محلی در تصاویر ورودی مقاوم است. بکارگیری شبکه ی عصبی کانولوشن و همچنین طراحی و استفاده از ساختار ترکیب خبره های کانولوشن(mixture of cnn experts) در تصاویر dce-mr سینه جهت تشخیص نوع تومور، جزء نوآوری های این تحقیق به شمار می آیند. شبیه سازی شبکه ی عصبی کانولوشن پیشنهادی برای 1200 عدد roi حاوی تومور خوش خیم و بدخیم، بهترین نتایج را در مرحله تست برای حساسیت 96/67%، برای خصوصیت 100% و برای صحت 98/33%، رقم زد. سیستم پیشنهادی با استفاده از ساختار ترکیب خبره ها(me)ی کانولوشن، توانست علی رغم کاهش زمان آموزش ساختار عصبی برای رسیدن به عملکردهای قابل قبول، از سویی به نرخ طبقه بندی 100% دست یابد. بر این اساس، نتیجه عملکرد طبقه بند me کانولوشن پیشنهادی در مرحله تست برای حساسیت، خصوصیت و صحت برابر 100% شد.