نام پژوهشگر: محمد مهدوی گلوجه

مجموع مرتبه ی عناصر زیرگروههای ماکسیمال گروه متقارن sn
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده ریاضی 1391
  محمد مهدوی گلوجه   سید مجید جعفریان امیری

فرض کنید g یک گروه متناهی باشد و (?(g را مجموع مرتبه ی عناصر گروه g در نظر بگیرید. قضیه ی اصلی ما در این پایان نامه‏، این است که‎‎‏ برای زیرگروه سره ی h از گروه متقارن sn، که h متمایز از گروه متناوب an می باشد‏، نشان ‎‎دهیم‏: .(?(an)>?(h برای این کار نشان خواهیم داد که برای هر زیرگروه ماکسیمال h از sn، کهh ‎ متمایز از گروه متناوب an باشد‏، همواره داریم: .(?(an)> ?(h طبق قضیه ی اسکات، هر زیرگروه ماکسیمال m از sn، در یکی از سه دسته ی غیرانتقالی، انتقالی اولیه و انتقالی غیراولیه قرار می گیرد. ابتدا نشان خواهیم داد که اگر h یک زیرگروه غیرانتقالی ماکسیمال از sn باشد، آنگاه .(?(an) > ?(h و در گام دوم نشان می دهیم که اگر h زیرگروه ماکسیمال انتقالی از sn باشد که متمایز از گروه متناوب an است، آنگاه .(?(an) > ?(h