نام پژوهشگر: وریا وکیلی
وریا وکیلی علیرضا غفاری حدیقه
برنامه ریزی ریاضی(بهینه سازی) شاخه ای از ریاضی کاربردی است که در شاخه های مختلف علم چون صنعت، اقتصاد و...، کاربرد دارد. در برنامه ریزی با یک هدف و ناحیه ای که مسئله روی آن تعریف شده است (ناحیه جواب مسئله) روبرو هستیم،که هدف بیشینه یا کمینه کردن تابع هدف روی این ناحیه است. اما متناظر با اینکه تابع هدف یا ناحیه جواب مسئله خطی باشند یا غیر خطی، مسئله ی ما نیز برنامه ریزی خطی و غیر خطی، به طور متناظر، خوانده می شود. به دلیل خواص مسائل برنامه ریزی که از لحاظ تئوری برای بیان و تفسیر روش ها مناسب تر هستند، مبنا را در این رساله برنامه ریزی خطی می گیریم، و به طور خلاصه تر به برنامه ریزی غیر خطی خواهیم پرداخت. به طور خلاصه روش های نقطه درونی به روش هایی اطلاق می شود که با اتخاذ روندی در الگوریتم خود تکرارهای حاصل شده از محاسبات الگوریتم را درون ناحیه ی شدنی حفظ می کنند. این روش که در سال 1984 و با مقاله ی کارمارکار معرفی شد، به طور گسترده ای در شاخه های مختلف ریاضی و به خصوص برنامه ریزی گسترش یافت. نسبت به وضعیت های مختلف از مسائل، روش های نقطه درونی هم به اقتضای این وضعیت ها تغییر کردند و روش های نقطه درونی طیف گسترده تری پیدا کردند. مسائل نقطه ثابت به مسائلی اصلاق می شود که در آنها با فرض اینکه برای تابعی چون ، نقطه ای با این خاصیت که مقدار تابعش برابر خودش باشد، که دررساله پی یافتن آن هستیم.f:a?b حالت های خاصی هم برای نقطه ثابت و نواحی که تابع روی آن تعریف می شود، وجود دارد. هرکجا از رساله نیاز باشد این حالت های خاص و خواص آنها و روش های متناظر با آنها بررسی می شود. اما هدف اصلی در این رساله یافتن روابط و خواص مشترک در روش های حل مسائل برنامه ریزی ریاضی، با مسائل نقطه ثابت و روش های متناظر یافتن نقطه ثابت توابع با چنین خاصیتی، است. روش هایی چون روش هموتوپی که هم برای مسائل برنامه ریزی ریاضی در قالب الگوریتم های نقطه درونی ، و هم برای یافتن نقطه ثابت توابع، به کار بسته می شوند دارای خط سیر های بسیار متشابه در برنامه ریزی ریاضی و مسئله یافتن نقطه ثابت هستند.مفهوم های دیگری چون خاصیت نقطه ثابت در الگوریتم های نقطه درونی، موازی با آن خط سیر روش هموتوپی که برای یافتن نقطه ثابت توابع با چنین خاصیتی استفاده می شود دارای خاصیت حفظ نقطه درونی بودن تکرارها که مدنظر روش های نقطه درونی در برنامه ریزی ریاضی است، هستند. کلمات کلیدی: روش های نقطه درونی، برنامه ریزی خطی و غیر خطی، مسئله نقطه ثابت، روش های هموتوپی