نام پژوهشگر: سیده شادی نورالدینی

خودریختی های چندجمله ای کلاس های خاصی از گروه ها
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1390
  سیده شادی نورالدینی   مهری اخوان ملایری

فرض کنیم g یک گروه باشد و paut(g) مجموعه ی متشکل از خودریختی های چندجمله ای g باشد. در این صورت زیرگروهی aut(g) را که توسط paut(g) تولید شود، با نماد (paut) ?(g)نمایش می دهیم. در این پایان نامه مطالب ذیل مورد بررسی قرار می گیرد. اگر g گروهی پوچ توان از رده ی c در آبلی باشد که در آن c یک عدد صحیح و مثبت است، آنگاه (paut) ?(g) پوچ توان از رده ی حداکثر c-1 در فراآبلی می باشد. اگر g حل پذیر از طول مشتق r>1 باشد، آن گاه (paut) ?(g) حل پذیر از طول مشتق حداکثر 2 (r-1) است. فرض کنیم g گروهی پوچ توان از رده c باشد که در یکی از شرایط زیر صدق می کند: g گروهی تاب دار از توان متناهی باشد؛ g گروهی بی تاب ناآبلی باشد. در این صورت paut(g) زیرگروهی پوچ توان از رده حداکثر max{c-1,1} از aut(g) می باشد. اگر g گروهی پوچ توان فراآبلی بی تاب از رده ی c>1 باشد، آن گاه paut(g) با مجموعه توابع چندجمله ای f(x)=x?_(i=1)^m?[x,v_i ]^(?_i ) که در آن ?_i=±1 و v_i?g برابر می شود.