نام پژوهشگر: سمیرا صدیقین
سمیرا صدیقین محمود طاهری
مدل های رگرسیونی برای برقراری ارتباط بین یک متغیر وابسته و تعدادی متغیر مستقل به کار می روند. برای ساختن این مدل ها نیاز به مشاهداتی از متغیرهای مورد مطالعه می باشد. در رگرسیون کلاسیک فرض می شود که این متغیرها و مشاهدات مربوط به آن ها دقیق هستند. ممکن است در یک بررسی مشاهدات مربوط به یک یا چند متغیر نادقیق باشند و یا نادقیق گزارش شده باشند. همچنین ممکن است که متغیرهای مورد مطالعه ذاتاً دارای ارتباطی نادقیق و مبهم(تقریبی) باشند. یکی از شیوه های مهم جایگزین رگرسیون کلاسیک در چنین مواقعی استفاده از رگرسیون فازی است. یکی از انواع رگرسیون فازی رگرسیون امکانی است که نخستین بار توسط تاناکا و همکاران پیشنهاد شد. در این پایان نامه به توضیح این رگرسیون پرداخته می شود و مدل های براوردشده در حالتی که ضرایب مدل فازی هستند و خروجی های مشاهده شده فازی و یا غیر فازی هستند تشریح می شوند. یکی از اشکالاتی که به روش تاناکا و همکاران وارد است حساس بودن آن نسبت به داده های پرت می باشد که باعث می شود در حضور داده های پرت فواصل پیش بینی وسیع به دست بیایند که مطلوب نیست. تا کنون چندین روش ارائه شده است که این مشکل را برطرف کنند. یک روش معرفی متغیر جدید و شکل گیری مسأله ی برنامه ریزی خطی فازی با فواصل فازی و به دست آوردن فواصل براورد منطقی می باشد. روش دیگر افزودن تعدادی محدودیت به محدودیت های مسأله ی اصلی و شناسایی نقاط پرت و اصلاح محدودیت های مربوط به نقاط پرت می باشد. در این صورت نیز اثر نقاط پرت حذف می شود.همچنین روش تاناکا و همکاران هنگامی که روند پهناها و نمای داده ها جهت عکس داشته باشند نتایج نامناسبی دارد که با استفاده از روش جدیدی که محدودیت روی علامت پهناها در مسأله ی برنامه ریزی خطی را حذف می کند، این مشکل برطرف می شود. برای شناسایی نقاط پرت روشی ارائه می گردد که با حذف هرکدام از داده ها اثرآن بر تابع هدف مسأله ی برنامه ریزی خطی بررسی می شودو نقطه ی پرت تشخیص داده می شود.