نام پژوهشگر: ملیحه دانش
ملیحه دانش محمود نقیب زاده
خوشه بندی، روش داده کاوی قدرتمندی است که جهت کشف موضوع از اسناد متنی مورد استفاده قرار می-گیرد. در این زمینه الگوریتم های خانواده k-means به دلیل سادگی و سرعت بالا، در خوشه بندی داده هایی با ابعاد بالا، کاربرد فراوانی دارند. در این الگوریتم ها، معیار شباهت cosine، تنها شباهت میان زوج اسناد را اندازه گیری می کند که در مواقعی که خوشه ها به خوبی تفکیک نشده باشند، عملکرد مناسبی ندارد. درمقابل، مفاهیم همسایگی و اتصال با در نظرگرفتن اطلاعات سراسری در محاسبه میزان نزدیکی دو سند، عملکرد بسیار بهتری دارند. چنانچه میزان شباهت دو سند از حد آستانه ای بیشتر باشد آن دو سند همسایه اند و تعداد همسایه های مشترک میان آنها، مقدار تابع اتصال این دو سند را نشان می دهد. بنابراین با توجه به اینکه تنها دو حالت همسایگی و عدم همسایگی داریم که با صفر و یک نمایش داده می شوند، مقداری از اطلاعات را در مورد میزان شباهت میان اسناد از دست می دهیم که منجر به کاهش دقت خوشه بندی حاصل می شود. جهت رفع این مشکل، در گام اول لیستی از مقادیر گسسته را برای تعیین بازه ای از مقادیر آستانه به جای تنها یک مقدار، در نظر گرفتیم که به دنبال آن درجات متفاوتی از همسایگی، بر اساس میزان شباهت میان اسناد خواهیم داشت. همچنین جهت افزایش هر چه بیشتر دقت نتایج حاصل، از منطق فازی نیز بهره برده و مقدار شباهت میان اسناد را با استفاده از مقادیر عضویت فازی نمایش دادیم. به این ترتیب میزان همبستگی میان اسناد را با استفاده از منطق فازی بهبود داده و گام جدیدی در کاربردهای منطق فازی برداشتیم. همچنین در این مدل، روابط معنایی میان کلمات نادیده گرفته شده و تنها اسنادی با واژگان مشابه با یکدیگر مرتبط شده اند. در این پروژه پایانی از آنتولوژی wordnet جهت ایجاد مدل جدید نمایش اسناد بهره بردیم، بدین صورت که در آن از روابط معنایی به منظور وزن گذاری مجدد بسامد کلمات در مدل فضای برداری اسناد استفاده شده است. سپس مفاهیم همسایگی و اتصال را بر روی مدل حاصل اعمال نمودیم. نتایج حاصل از اعمال روش های پیشنهادی و ترکیبات آنها بر روی مجموعه داده های متن واقعی، حاکی از عملکرد موثر و مناسب تر الگوریتم پیشنهادی ما نسبت به روش های پیشین می باشد و می تواند جایگزین خوبی برای الگوریتم های پیشین در امر خوشه بندی اسناد باشد.