نام پژوهشگر: مجتبی قاسمی
فیروز خدابخشی علی بارانی
باتوجه به نقش مهمی که توابع محدب و شبه محدب در شاخه های مختلف ریاضیات ایفا می کنند وبه ویژه در مباحث بهینه سازی از اهمیت خاصی برخوردارهستند، به عنوان مثال یک تابع محدب (اکید) روی یک مجموعه باز، بیش از یک مینیمم ندارد و ... یکی از نامساوی هایی که توجه بسیاری از ریاضیدانان را در چنددهه اخیر به خود جلب کرده است نامساوی معروف هرمیت- هادامارد است که تعمیم های مختلفی داشته خصوصا بر روی دیسک، گوی و جندضلعی های منتظم و...
زهره هدایت علی بارانی
در این پایان نامه, مفاهیم تحدب و مسائل نامساوی تغییراتی و همچنین مسائل بهینه سازی روی فضای خطی بررسی می شود. لازم به ذکر است که در بسیاری از مطالعات, فضای مورد استفاده غیر خطی می باشند. خمینه ها به عنوان فضای غیر خطی از اهمییت خاصی برخوردار می باشند. از آنجایی که خمینه هادمارد با فضای خطی r^n دیفئومورفیسم می باشد, بنابراین ابتدا تمامی مفاهیم را روی خمینه هادمارد بیان می کنیم, سپس با استفاده از تکنیک های آنالیز محدب مفاهیم مسائل نامساوی تغییراتی و مسائل بهینه سازی را از خمینه هادمارد به روی خمینه ریمانی تعمیم می دهیم و ارتباط بین آنها را بررسی خواهیم کرد.
مجتبی قاسمی محمدمهدی زاهدی
چکیده ندارد.