نام پژوهشگر: فاطمه محمدی
فاطمه محمدی عبدالرضا بازرگان لاری
مدلهای رگرسیون خطی جزئی، بدلیل آنکه خصوصیات جذاب مدلهای خطی (مانندتفسیرپذیری برآورد پارامتر) را با مفاهیم انعطاف پذیرتر رگرسیون ناپارامتری ترکیب می کنند، مورد توجه زیادی قرار گرفته اند. مدل رگرسیون خطی به صورت زیر تعریف می شود:y_i=x_i^t+m(t_i )+?(t_i)? ??_i بطوریکه? یک تابع هموار ساز می باشد، مقالات علمی کمتری در ارتباط با مسئله آزمون فرض پیرامون تابع واریانس?^2 (.)در دسترس می باشد. هدف اصلی این پایان نامه، معرفی آزمونهایی برای تابع واریانس در مدل های رگرسیون خطی جزئی و مقایسه آنها با یکدیگر می باشد. در فصل دوم آزمون همسانی واریانس ها یعنی آزمونh_0:?^2 (t)=?را برسی می کنیم ودر فصل سوم مسئله کلی آزمون برای حالت پارامتری تابع واریانس یعنی h_0:?^2 (t)=?^2 (t,?) ?t?[0,1] را برسی خواهیم کرد، بطوری که?^2 (t,?)یک تابع معلوم و? بردار مجهول پارامتر می باشد. در این فصل ابتدا دو فرآیند تصادفی معرفی می کنیم که عنوان پایه ای برای ساخت آماره آزمون فرض مورد استفاده قرار خواهند گرفت . سپس همگرایی ضعیف فرآیندهای معرفی شده، به فرآیندهای گوسی و کاربردهای آماری آنها مورد بررسی قرار خواهند گرفت . ویژگی های مجانبی آزمون در حالت طرح تصادفی مورد بررسی قرار می گیرند. در فصل چهارم ، با ارائه یک شبیه سازی ، آزمونها را با یکدیگر مقایسه کرده و کاربرد آنها را در مثال عددی تشریح می کنیم.
فاطمه محمدی علیرضا دانش کاظمی
چکیده ندارد.
فاطمه محمدی مهدی احمدی نیا
چکیده ندارد.