نام پژوهشگر: سید رضا نبوی
فاطمه مسعودی خسروشاهی علیقلی نیایی
یکی از تکنیکهای موثر در حذف ترکیبات آلی فرار، اکسایش کاتالیزوری کامل تبدیل آنها به ترکیبات بی اثر مانند آب و دی اکسید کربن می باشد. از مزایای مهم اکسایش کاتالیزوری می توان به انجام فرآیند در دمای پایین تر، مصرف انرژی کمتر، تولید محصولات جانبی ناچیز و راندمان تبدیل بالا اشاره نمود. در این کار پژوهشی از کربن فعال به عنوان پایه کاتالیزور برای تهیه نانوکاتالیزورهای فلزات واسطه ردیف اول(v, cr, mn, fe, ni, co, cu, zn) جهت حذف آلاینده تولوئن استفاده شده است. از مزایای استفاده از کربن فعال اقتصادی بودن این ساپورت نسبت به بقیه ساپورت ها و امکان صنعتی شدن این پروژه می باشد. در این کار تحقیقاتی از هیبرید نمودن مدل شبکه عصبی مصنوعی با یک بهینه سازچند متغییره به نام الگوریتم ژنتیک ساخت کاتالیست بهینه با حداقل آزمایشات، انجام شده است. از روش طراحی آزمایش تاگوچی به منظور تعیین نقاط آزمایشی تصادفی مورد نیاز و همچنین مقایسه این بهینه ساز کلاسیک با روش هیبریدی مورد استفاده، بهره برده شده است. همچنین از توصیفگرهای اتمی به همراه متغییرهای ساخت کاتالیزور به طور همزمان جهت مدلسازی استفاده شده است. در نهایت با استفاده از چنین سیستم هوشمندی تعداد آزمایشات لازم برای بررسی هر فلز واسطه ای حدود 66 درصد کاهش یافته است. نتیجه نهایی این کار معرفی یک کاتالیست فعال با ترکیب fe/ac است. میزان بارگذاری فلز2/2%، مقدار حلال 41 میلی لیتر، دمای کلسیناسیون مطلوب 446 درجه سانتیگراد و زمان کلسیناسیون مطلوب 49/4 ساعت است.
مسعود نوایی شیرازی علیقلی نیایی
در صنعت پتروشیمی مدرن، از پروپیلن به طور وسیعی برای تولید پلی پروپیلن، اکریلونیتریل، اکرولین، کیومن و اکریلیک اسید استفاده می گردد. همچنین پلاستیک های مختلفی که از پروپیلن تولید می شوند می توانند جایگزین موا غیر پلاستیکی مانند: کاغذ، چوب و استیل شوند. از این رو بازار تقاضا برای پروپیلن به طور پیوسته در حال افزایش است. در حال حاضر پروپیلن به عنوان محصول جانبی در طی فرآیند تولید اتیلن از طریق کراکینگ بخار نفتا و کراکینگ کاتالیستی سیال (fcc) تولید می گردد. اما با توجه به بحران های نفتی و همچنین کمبود منابع نفتی در آینده، یافتن روشی جدید، که دارای درصد محصول بالایی از پروپیلن باشد، مورد نیاز است. . نظر به اینکه متانول می تواند به آسانی از طریق گاز طبیعی، ذغال سنگ و بیومس تولید گردد از این رو در چندین سال اخیر فرآیند تبدیل متانول به پروپیلن (mtp) به عنوان روشی جدید در تولید پروپیلن مورد توجه فزاینده ای قرار گرفته است. تحقیقات نشان داده است که انتخاب گری پروپیلن می تواند با اصلاح کاتالیست zsm-5 افزایش یابد. در این کار پژوهشی، از شبکه های عصبی مصنوعی و الگوریتم های ژنتیکی در طراحی کاتالیست های h-zsm-5 اصلاح شده به صورت دو فلزی با چهار فلز نیکل، کرم، سریم و آهن برای افزایش انتخاب پذیری پروپیلن در فرآیند تبدیل کاتالیتیکی متانول به پروپیلن استفاده شد. برای این منظور در ابتدا کاتالیست hzsm-5 با فلزات واسطه مختلف در فرایند mtp مورد ارزیابی قرار گرفت و نهایتاً کاتالیست mn-zsm-5 به عنوان بهترین کاتالیست پایه یرای کاتالیست های دوفلزی انتخاب گردید. سپس مقدار بهینه بارگذاری منگنز تعیین شد. از روش رویه پاسخ برای تولید پایگاه داده ها با سه فاکتور (مقدار بارگذاری فلز دوم، دمای کلسیناسیون و زمان کلسیناسیون) استفاده گردید. برای مدل سازی از شبکه عصبی سه لایه ای استفاده شد و توصیف گرهای اتمی برای تمایز فلز ها از هم بکار رفتند. برای دست یابی به مدل بهینه، شبکه های با تعداد نرون متفاوت در لایه مخفی بررسی شد. مدل با r2 بالا به عنوان مدل بهینه انتخاب شد و برای تعریف تابع برازندگی بکار رفت. از الگوریتم ژنتیکی برای یافتن کاتالیست مطلوب استفاده شد. در نهایت کاتالیست cr2.46-mn-zsm-5 به عنوان کاتالیست بهینه معرفی گردید. دمای کلسیناسیون مطلوبc°486 و زمان کلسیناسیون مطلوب 4 ساعت است. با مقایسه کارایی کاتالیست hzsm-5 با کاتالیست بهینه معرفی شده مشاهده گردید که انتخاب پذیری نسبت به پروپیلن به اندازه 18% افزایش یافته است. همچنین شناسایی کاتالیست پایه با تکنیک های xrd, sem, tem انجام گرفت.
سمیرا عارفی اسکویی علیقلی نیایی
یکی از تکنیک های موثر در حذف ترکیبات آلی فرار اکسیداسیون کاتالیستی این ترکیبات می باشد. از مزایای مهم اکسایش کاتالیستی در مقایسه با سایر روش ها می توان به انجام فرآیند در دمای پایین تر، مصرف انرژی کمتر، تولید محصولات جانبی ناچیز و راندمان تبدیل بالا اشاره کرد. در کار پژوهشی حاضر، نانو ذرات laxsr1-xfeyco1-yo3 با ساختار کریستالی پروسکیتی به عنوان کاتالیست جدید برای فرآیند اکسایش کاتالیستی تولوئن انتخاب و به روش سل-ژل سنتز گردید. هدف کار پژوهشی حاضر بهینه سازی شرایط تهیه کاتالیست برای رسیدن به کاتالیست بهینه برای فرآیند مذکور می باشد. در جهت دستیابی به کاتالیست بهینه، طراحی کاتالیست با استفاده از سیستم هوشمند شبکه عصبی مصنوعی صورت گرفت. برای تولید پایگاه داده مورد نیاز برای مدل سازی، طراحی آزمایش با رویکرد رویه پاسخ (rsm) با در نظر گرفتن چهار فاکتور (جزء مولی لانتانیوم، جزء مولی آهن، دمای کلسیناسیون و مقدار اسید سیتریک) موثر بر ساختار و عملکرد کاتالیست انجام شد. در نهایت کاتالیست های la0.9sr0.1fe0.5co0.5o3 با دمای کلسیناسیون 700 و 800 درجه سانتی گراد و نسبت مولی اسیدسیتریک به نیترات 3/0، la0.9sr0.1fe0.82co0.18o3 با دمای کلسیناسیون 700 درجه سانتی گراد و نسبت مولی اسیدسیتریک به نیترات 750/0 و la0.8sr0.2fe0.66co0.34o3 با دمای کلسیناسیون 650 درجه سانتی گراد و نسبت مولی اسیدسیتریک به نیترات 525/0به عنوان کاتالیست های بهینه با تبدیل 100% برای این فرآیند معرفی شدند. برای بررسی ساختار، مورفولوژی و احیاپذیری و ارتباط آنها با فعالیت کاتالیست ها به ترتیب از تکنیک های xrd، sem و tpr استفاده گردید.