نام پژوهشگر: بنفشه اکبری
بنفشه اکبری علیرضا مقدم فر
فرض کنیم g یک گروه متناهی باشد و نیز فرض کنیم p_1,p_2,..,p_k مام مقسوم علیه های اول مرتبه g باشند کهp_1<p_2<..<p_k.در این صورت گراف اول وابسته به گروه g عبارت است از یک گراف ساده که مجموعه راسهای آن عبارت است از {p_1,...,p_k} و دو راس متمایز p_i و p_j توسط یک یال به هم وصل می باشند اگر و تنها اگر g شامل عنصری از مرتبه p_ip_j باشد. درجه راس دلخواه p_i در این گراف را با( deg(p_i نشان می دهیم و مجموعه k-تایی مرتب شامل درجات رئوس را الگوی درجه g می نامیم و آن را با( d(g نشان می دهیم. بنا به تعریف گروه متناهی h را od-سرشت پذیر گوییم هرگاه برای هر گروه متناهی مانند h با شرایط |h|=|g| و( d(h) = d(g بتوان نتیجه گرفت h با g یکریخت است. در این رساله اطلاعاتی درباره ساختار گروه با استفاده از الگوی درجه آن ارائه می دهیم. همچنین درجه راس 2 و درجه مشخصه میدان را در گراف اول مشخص می کنیم. سپس نشان خواهیم داد برخی از گروههای ساده تصویری( l_4(q و گروههای ساده ( l_6(3 و ( u_4(5 گروههایی od-سرشت پذیرند. در این رساله همچنین تعمیمی از گرافهای اول موسوم به گرافهای حلپذیر را نیز مورد بررسی قرار می دهیم. این گراف عبارت است از گراف ساده ای که مجموعه راسهای آن عبارت است از {p_1,...,p_k} و دو راس متمایز p_i و p_j توسط یک یال به هم وصل می باشند اگر و تنها اگر g شامل زیرگروه حلپذیری باشد که p_ip_j مرتبه آن را بشمارد. درجه راس دلخواه p_i در این گراف را با( deg_s(p_i نشان می دهیم و مجموعه k-تایی مرتب شامل درجات رئوس را الگوی درجه وابسته به گراف حلپذیر گروه g می نامیم و آن را با( d_s(g نشان می دهیم. بنا به تعریف گروه متناهی h را od_s-سرشت پذیر گوییم هرگاه برای هر گروه متناهی مانند h با شرایط |h|=|g| و( d_s(h) = d_s(g بتوان نتیجه گرفت h با g یکریخت است. در این رساله ساختار آن دسته از گروههای متناهی را مورد بررسی قرار می دهیم که گراف حلپذیر آنها گراف ستاره یا دوبخشی هستند. همچنین نشان می دهیم که گروههای ساده پراکنده و برخی از گروههای خطی (l_2(q توسط مرتبه و الگوی درجه گراف حلپذیر وابسته به آنها od_s-سرشت پذیرند.