نام پژوهشگر: سعید محمدیان سمنانی

تحلیل حساسیت مسائل برنامه ریزی خطی فازی
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده علوم ریاضی 1391
  نرگس عظیمی فر   محمد رضا صافی

در این پایان نامه به تحلیل حساسیت مسائل برنامه ریزی خطی فازی می پردازیم. مطالعه تغییر اجزای مسئله به دو قسمت تقیسم می شود. قسمت اول مربوط بع تغییر در تابع عضویت پارامترهااست. قسمت دوم به تحلیل حساسیت در پارامترهای مسئله (از قبیل بردار هزینه، ماتریس محدودیت و بردار نیازمندی)و اضافه کردن یک فعالیت جدید و محدودیت جدید پرداخته می شود. تحلیل حساسیت در این عبارات در شکل های مختلف مسئله فازی، یعنی مسئله با متغیرهای فازی، مسئله با پارامترهای فازی و مسئله تماما فازی مطالعه می شود. عمده تحقیقاتی که در این زمینه انجام شده، از توابع مرتب کننده به عنوان ابزاری برای تبدیل یک مسئله فازی به یک مسئله قطعی استفاده کرده اند. بنابراین در این پایان نامه به معرفی توابع مرتب کننده نیز، می پردازیم.

یک روش شبه نیوتن اصلاح شده برای بهینه سازی ساخت یافته با اطلاعات جزیی از ماتریس هسی
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1393
  اسماعیل داودی نیا   سامان بابایی کفاکی

در روش شبه نیوتن اصلاح شده برای بهینه سازی ساخت یافته با اطلاعات جزیی از ماتریس هسی بر خلاف روش هایی که فقط از گرادیان ها در دو تکرار آخر استفاده می کنند، هم از مقادیر تابع و هم از گرادیان ها در دو تکرار آخر استفاده می شود. این روش دارای همگرایی موضعی و زبر خطی است. نتایج حاصل از این روش در مقایسه با روش های مطرح شده قبلی امیدوار کننده تر است.

مسائل برنامه ریزی خطی بعلاوه کسری - خطی
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1393
  اسماعیل شاهرخ   محمدرضا صافی

هدف اصلی این پایان نامه، بررسی مسائل برنامه ریزی خطی بعلاوه کسری خطی ( llfp) است. ابتدا الگوریتم داینکل باخ را برای مسائل llfp تک هدفه گسترش می دهیم. سپس روش آرمان فازی را برای حل مسائل چندهدفی llfp به کار می بریم. همچنین مسائل دوگان و تحلیل حساسیت را برای مسئله برنامه ریزی llfp مطالعه می کنیم و در آخر مسائل حمل و نقل و پارادوکس بیشتر برای کمتر برای این گونه مسائل را بررسی می کنیم.

ویژگی های مجموعه احاطه کننده و احاطه کننده کلی در گراف ها و چندجمله ای آن
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1393
  اشرف السادات سرکبیری   سعید محمدیان سمنانی

امروزه نظریه گراف نسبت به زمان پیدایش خویش بسیار پیشتر رفته است به‎ طوری که در دنیای واقعی کاربردی بودن آن برکسی پوشیده نیست؛ به خصوص عجین شدن آن با علم کامپیوتر باعث شده که این علم در زمره پرکاربردترین آن ها باشد. نقش‎‎‎‎‎‎‎‎‎‎ گراف علاوه بر ریاضیات کاربردی و محض در بسیاری از علوم مانند فیزیک‏، شیمی‏، مهندسی‏، کامپیوتر‏، سیاست‏، اقتصاد و غیره بسیار پررنگ است.‎‎ بیان کاربردهای بی شمار گراف ها در یک مقدمه کوتاه نمی گنجد ولی در این پایان نامه قصد داریم به بیان مو‎‎ضوعاتی درمورد یکی از مباحث بسیار مهم و کاربردی (و البته نوپا) در نظریه گراف‎‎ ‎یعنی‎ مجموعه احاطه کننده در گراف بپردازیم. در فصل اول به بیان تعاریف اولیه در گراف ها پرداختیم.در فصل دوم مجموعه احاطه کننده را معرفی و کران های ‎عدد‎ احاطه کننده را می یابیم. همچنین چندجمله ای احاطه کننده و ریشه های آن را به دست می آوریم. سپس در فصل سوم مباحثی درمورد زیرشاخه ای از آن ‏با نام «مجموعه احاطه کننده کلی» مطرح می کنیم و کران های بالا و پایین را برای عدد احاطه کننده کلی بیان می کنیم.

رویکردی جدید در محاسبه عدد k-مستقل در گراف های خاص
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1393
  شیدا مداح   سعید محمدیان سمنانی

در فصل 1‏‎ به بیان و بررسی تعاریف ابتدایی گراف و همچنین بیان برخی اقدامات اولیه ریاضیدانان در زمینه استقلال در گراف‏ می پردازیم‏،‎‎‎‎‎ سپس مسأله ای کاربردی از مجموعه مستقل را بیان می کنیم.‎‎ ‎ در فصل 2‏‎‎‎ مساله یافتن بیشترین تعداد مجموعه های مستقل ماکسیمم گراف ‎$ g $‎ از مرتبه ‎n را مورد مطالعه قرار می دهیم. این مساله را برای بخش های مختلف گراف‏، مانند گراف های عمومی‏، درخت ها‏، جنگل ها‏، گراف های همبند با حداکثر یک دور‏، گراف های همبند‏ و گراف های مثلث-‎‎‎آزاد و... ‎‎را مورد بررسی قرار می دهیم. همچنین گراف اکسترمال این ماکسیمم مقادیر را نیز بدست می آوریم.‎‎ ‏در فصل ‎3‎‏‎‎ تقریبی ساده و اولیه از کران پایین ‎‎‎‎‎ ‎alpha_‎k ‎(‎g)‎‎‎‎ که با حذف کردن رئوس تکراری از درجه ماکسیمم بدس‎ت‎ می آید، را بدست می آوریم.‎ به این منظور پارامتر ‎$‎f(k,d)‎$‎ را در گراف ‎$‎g‎$‎ تعریف می کنیم که از پایین‎‎‏، بهترین نسبت ممکن برا‏ی ‎‎‎$‎‎frac{alpha(g)}{n(g)}‎$‎‎ ‎‎را در گراف‏ ‎$‎‎‎g‎$‎ با‏ ‎$‎d(g)leqslant ‎d‎$‎‎‏ مورد تقریب قرار داده و مقدار دقیق ‎$‎‎‎f(1,d)‎$‎‏ را محاسبه م‎ی‎کند و کران پایین برای ‎$‎‎‎f(k,d)‎$‎ را به ما می دهد. ‎همچنین‎ کران بالا برای ‎‏‎$‎‎‎f(k,d)‎$‎ را بهبود می بخشیم. این فصل را با بیان یک سری مسائل حل و اثبات نشده، به پایان می رسانیم و همچنین جوابی ر‎ا‎ که تاکنون به آن دست یافته ایم‎‎‏‏، را ارائه می کنیم. در فصل ‎4‎‎ اثر متقابل ‎‎‎‎alpha_j(g)‎‎ و ‎gamma_k(g)‎‎‏ در گراف‎ ‎‎‎‎g‎‎ را مورد مطالعه قرار داده و قضیه اصلی را برای عمومیت بخشیدن قضیه فرعی بیان می کنیم و اینکه چه زمانی تساوی دو پارامتر حاصل می شود را مورد مطالعه قرار می دهیم.‎‎‎ بعلاوه رابطه ‎م‎تقابل این پارامتر ها را قوت ‎‎بخشیده و کران جدید روی ‎‎‎‎k‎-احاطه گر ها و‎‏ ‎‎‎‎j‎‎-مستقل ها می یابیم

ریشه های چند جمله ای های رنگی یک حلقه ی ‎4‎ خوشه ای
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده علوم پایه 1394
  حمیدرضا فراهانی   سعید محمدیان سمنانی

فرض کنیم a، b، c و d چهار عدد صحیح مثبت باشد و "k" _"a" ، "k" _"b" ، "k" _"c" و "k" _"d" گراف های کامل به ترتیب با a، b، c و d راس باشند اگر هر راس "k" _"a" و "k" _"c" را با هر راس از "k" _"b" و "k" _"d" مجاور کنیم گرافی شبیه به گراف شکل مقابل می شود. که آن را با نماد "r" _"a,b,c,d " نمایش می دهیم.