نام پژوهشگر: رکسانا رمضانی

کلاس بندی ترافیک شبکه با استفاده ازالگوریتم ماشین بردار پشتیبان
thesis دانشگاه الزهراء علیها السلام - دانشکده فنی 1393
  رکسانا رمضانی   محمدرضا کیوانپور

امروزه کاربردهای بسیار متفاوت و متنوعی از طریق اینترنت ارائه می شوند که هر کدام نیازهای ترافیکی منحصر بفردی دارند. به عنوان مثال کاربردهای چند رسانه ای نیاز به تضمین کیفیت سرویس دارند، در حالیکه کاربرهایی که از پروتکل های tcp استفاده می کنند با استفاده از مکانیزم های شناسایی و پیشگیری از ازدحام، کمترین میزان منابع به آن ها اختصاص می یابد. بنابراین لزوم مدیریت و شناسایی کاربردهای موجود در شبکه امری ضروری محسوب می شود. با توجه به حجم کاربردهای موجود در فضای اینترنت استفاده از روش های هوشمند برای انجام این امر مهم اجتناب ناپذیر می باشد. یکی از این روش ها که روز به روز بر محبوبیت آن افزوده می شود روش های مبتنی بر الگوریتم های کلاس بندی می باشند. این روش ها برای کلاسبندی ترافیک شبکه از ویژگی های مختلف مستخرج از جریان های شبکه استفاده می کنند. در راستای این تحقیقات، محققان صدها ویژگی مختلف برای جریان های شبکه ارائه داده اند. با ارائه این ویژگی ها روند کار پژوهشگران تغییر یافت. حالا سوال اصلی تحقیقات شبکه ای به شکل دیگری مطرح می شود: آیا همه ویژگی های ارائه شده برای کلاس بندی لازم هستند؟ آیا زمان صرف شده برای کلاس بندی با توجه به محدودیت های منابع و نیازهای بلادرنگ شبکه با استفاده از این ویژگی ها، قابل قبول است؟ با توجه به آمارهای گرفته شده و نتایج کار پژوهشگران جواب این سوالات منفی هستند و به این نتیجه می رسیم که باید یک مجموعه ویژگی بهینه برای اینکار پیدا کرد. این مجموعه باید طوری انتخاب شود که بین دقت کلاس بندی و منابع (زمان) محاسباتی موجود توازن برقرار کند. مسأله مهم دیگر در این زمینه نمونه برداری می باشد. قبل از انتخاب مجموعه ویژگی بهینه برای الگوریتم یادگیری، انتخاب نمونه های (جریان های ) آموزشی برای ساخت مدل کلاس بندی و همچنین نمونه هایی برای آزمودن مدل ساخته شده اهمیت فراوانی دارد. این جریان ها باید طوری انتخاب شوند که به بهترین شکل، نماینده کل جریان های شبکه باشند. جریان های شبکه از توزیع احتمالی خاصی در ارسال بسته ها پیروی می کنند. نمونه ها باید طوری انتخاب شوند که این توزیع ها را بتوانند حفظ کنند. ماشین بردار پشتیبان یکی از محبوبترین الگوریتم های یادگیری ماشین می باشد ولی به دلیل پیچیدگی و زمان محاسباتی زیاد آن در کلاس بندی ترافیک شبکه محبولیت کمتری داشته است. این تحقیق نشان داده شده است که با استفاده از روش های نمونه برداری و انتخاب ویژگی مناسب، می توان از مزایای این کلاسبند قدرتمند استفاده کرد. با استفاده از ترکیب روش های ارائه شده، ترافیک شبکه با دقت 97% کلاس بندی شده است. دقت جزیی کلاس بندی برای انواع کاربردها نیز به مراتب بهتر از روش های قبلی می باشد.