نام پژوهشگر: بهمن حیاتی
شکوفه جلیلوند فرشید میرزایی
در این پایان نامه به معرفی روش بسط سری-تیلور برای حل عددی معادلات انتگرال ولترا و فردهلم و معادلات انتگرو-دیفرانسیل ولترا و فردهلم می پردازیم. با استفاده از این روش ابتدا جواب مساله را بر حسب بسط سری-تیلور می نویسیم و سپس با جایگذاری در معادلات انتگرال و معادلات انتگرو-دیفرانسیل، به یک دستگاه معادلات جبری می رسیم که با حل دستگاه معادلات جبری بدست آمده تقریب خوبی از جواب معادله انتگرال و معادله انتگرو-دیفرانسیل حاصل می شود. این پایان نامه شامل چهار فصل می باشد. در فصل اول مقدمه ای کوتاه در مورد تاریخچه معادلات انتگرال و معادله انتگرو-دیفرانسیل و تعاریف لازم آورده شده است. در فصل دوم به روش بسط سری-تیلور و استفاده از آن برای حل عددی معادلات انتگرال ولترا و فردهلم پرداخت شده است. در فصل سوم از روش بسط سری-تیلور و استفاده از آن برای حل عددی معادلات انتگرو-دیفرانسیل ولترا و فردهلم استفاده شده است.در فصل چهارم به معرفی نوعی روش بسط برای حل عددی معادلات انتگرال ولترا خطی که شبیه به بسط سری-تیلور می باشد، می پردازیم و آن را با روش بسط سری-تیلور مقایسه می کنیم.
فاطمه وزیری وفا بهمن حیاتی
در فصل اول، برخی تعاریف مقدماتی از جمله جبر باناخ و مدولهای باناخ را معرفی میکنیم. در فصل دوم، به توصیف میانگین پذیری ضعیف جبر a(x) روی فضای باناخ x میپردازیم. این توصیف نقش اساسی در بیان نتایج فصلهای بعدی دارد. در فصل سوم، به بررسی میانگین پذیری ضعیف جبر عملگرهای تقریبی روی فضاهای ضربی، مجموعهای مستقیم و دوگانها میپردازیم. خاصیت تقریبی کراندار نقشی اساسی در بیشتر نتایج این فصل دارد. همچنین به عنوان یک نتیجه از نتایجی که روی مجموعهای مستقیم بیان میکنیم، خواهیم دید خاصیت تقریبی کراندار شرط لازم برای میانگین پذیری ضعیف جبر عملگرهای تقریبی روی یک فضای باناخ نیست. اینکه خاصیت تقریبی کراندار شرط لازم نیست، انگیزه اصلی ما برای بیان نتایج فصل چهارم است. در این فصل شرط لازم را معرفی می کنیم و از آن استفاده میکنیم و مثالهایی از فضاهای باناخ x را معرفی می کنیم که a(x) میانگین پذیر ضعیف نیست. همه مثالهایی که در این فصل معرفی خواهیم کرد شرط دیگری جز خاصیت تقریبی دارند. بنابراین این نتایج به ما این امکان را نخواهند داد تا در مورد کافی بودن خاصیت تقریبی کراندار برای میانگین پذیری ضعیف جبر عملگرهای تقریبی نتیجه گیری داشته باشیم. به این پرسش که آیا خاصیت تقریبی کراندار شرط کافی هست یا نه در فصل پنجم پاسخ میدهیم. مثالهایی از فضاهای باناخ x با خاصیت تقریبی کراندار خواهیم ساخت که جبر عملگرهای تقریبی روی آنها میانگین پذیر ضعیف نیست.
فاطمه یوسفی کنجدر بهمن حیاتی
در این پایان نامه، ابتدا فضایcat(0) را به عنوان یک فضای ژئودزی مورد بررسی قرار می دهیم. تعاریف، لم ها و قضایای مقدماتی لازم را بیان می کنیم، سپس مفهوم ?-همگرایی که اولین بار توسط لیم معرفی شد را برای فضاهایcat(0) بیان کرده و نشان می دهیم که بسیاری از قضایای همگرایی ضعیف در فضاهای باناخ می توانند به فضایcat(0) توسیع یابند. در ادامه مطلب نیز قضایای ?-همگرایی را برای دنباله های تکراری پیکارد، من و ایشیکاوا در شرایط فضایcat(0) ثابت می کنیم.
مارال بافنده بهمن حیاتی
نیم ساده بودن دوکان دوم جبر باناخ از عملکرهای روی فضای باناخ، (b(e، با هر دو ضرب ارنز القایی را بررسی می کنیم. نشان میدهیم برای ریه بزرکی از فضاهای باناخ e، که زیر فضاهایی او فضای l^p را در بریاری و با فضای هیلبرت یکریخت نیستند (b(e نیم ساده نیست. این موضوع از یک نمایش جدید او (b(l^p نتیجه می شود، سبس ساختار یک عضو از رادیکال (b(l^p برای p مخالف دو را بدست می آوریم.
فتاح جعفری بهمن حیاتی
ما در این پایان نامه فضاهای عملگری، جبرهای عملگری، جبرهای باناخ دوگان کاملا انقباضی و همچنین درون یابی فضاهای باناخ و فضاهای عملگری را به دو شکل حقیقی و مختلط مطالعه می کنیم و به کمک کاربردهای این مفاهیم نشان خواهیم داد که هر جبر باناخ دوگان کاملا انقباضی با زیر فضای ضعیف-بسته ای از فضای عملگری عملگرهای خطی کاملا کراندار روی یک فضای عملگری انعکاسی، کاملا ایزومتری است.
مهدی نوحی بهمن حیاتی
در ابتدا فضای در ختان متری را مورد برسی قرار داده و قضایای نقطه ثابت را به اثبات رسانده و در نهایت در این پایان نامه روی فضاهای cat(o) کرده که در واقع فضای درختان متری زیر مجموعه ای از این فضا می باشند. در این فضا ثابت می کنیم اگر e یک زیر مجموعه محدب بسته کراندار از فضای cat(o) در نگاشت مجموعه مقدار باشد که در شرایط درونی ضعیف صدق کند دارای نثطه ثابت می باشد
الهه امین بهمن حیاتی
هدف این مقاله بررسی شرایطی از گروه g است که با آن شرایط zl^1(g میانگین پذیر می شود.در فصل اول به بیان تعاریف و مفاهیم لازم می پردازیم. در فصل دوم مباحثی را در زمینه جبرهای ابر تاوبری و جبرهای گروهی ارایه می دهیم.
مهسا بخشی بهمن حیاتی
در سال 1971،"گروئرت" و "ریمرت" ثابت کردند که یک جبر باناخ نوتری مختلط جابجایی، لزوما متناهی بعد است. به طور دقیق تر آنها ثابت کردند که یک جبر باناخ مختلط جابجایی، بعد متناهی روی c دارد هرگاه همه ایده آل های بسته در جبر، به طور جبری متناهی مولد باشند. در سال 1974،"سینکلیر" و "تولو" توانستند این مسئله را در حالت غیر جابجایی نیز ثابت کنند.. در 1978، "فریرا" و "توماسینی" ثابت کردند نتیجه گروئرت و ریمرت در صورتی که ایده آل های بسته با ایده آل های ماکسیمال در کران "شیلو" از جبر باناخ a جایگزین شود؛ همچنان صحیح است. در این نوشتار یک برهان کوتاه تر از نتیجه اخیر به همراه تعدادی تعمیم و مثال ارائه داده می شود. همچنین این حدس بررسی می شود که اگر همه ایده آل های چپ ماکسیمال در جبر باناخ یکدار a متناهی مولد باشند؛ آن گاه a متناهی بعد است.
نرگس فرجی مقدم بهمن حیاتی
در جبرهای باناخ جمع ایده آل های بسته لزوماً بسته نیست. ما نتایج و مثال هایی را بررسی خواهیم کرد که درستی این مطلب را بیشتر از پیش بر ما معلوم می کنند. همچنین در این پایان نامه یک شرط کافی برای بسته بودن جمع دو ایده آل بسته در جبر یکنواخت معرفی می کنیم. یک جبر شرکت پذیر یا تناوبی نوتری است، اگر در شرط زنجیر صعودی روی ایده آل های چپ صدق کند یا به طور معادل هر ایده آل چپ متناهی مولد باشد. یک نتیجه از سینکلر و تولو بیان می کند که یک جبر باناخ نوتری شرکت پذیر، متناهی بعد است. در این پایان نامه ابتدا در مورد جبرهای باناخ تناوبی و شرکت پذیر که هر ایده آل چپ آن شمارا مولد است صحبت خواهیم کرد و در پایان خواهیم دید که یک جبر باناخ تناوبی که هر ایده آل چپ آن شمارا مولد باشد، متناهی بعد است.