نام پژوهشگر: بهروز طایفه رضایی

بررسی گراف های با نقصان 2
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم 1390
  زهرا پیش باز   بهروز طایفه رضایی

مسئله یافتن بزرگ ترین عدد ممکن از رئوس در گراف با ماکزیمم درجه ? و قطر d ?(n?_(?,d)) به مسئله درجه/ قطر مشهور می باشد که اخیرا در نظریه گراف مورد توجه قرار گرفته است. آنچه اهمیت دارد یافتن یک کران بالا برای n_(?,d) می باشد.در گراف هایی با ماکزیمم درجه ? و قطر d این کران به صورت زیر تعریف شده و کران مور نامیده می شود. 1+??_(i=1)^(d-1)???(?-1)?^i.? گرافی که این کران را اختیار کند گراف مور می نامیم. فصل اول این پایان نامه شامل تعاریف و قضایای مقدماتی می باشد. در فصل دوم گراف های مور با نقصان حداکثر 2 مورد بحث قرار گرفته اند. در فصل سوم به بیان ویژگی های جبری گراف های دوبخشی مور با نقصان 2 پرداخته و عدم وجود آن ها را به ازای قطرهای زوج ثابت خواهیم کرد و نهایتا در فصل چهارم به بررسی عدم وجود گراف های دوبخشی مور به ازای قطرهای فرد خواهیم پرداخت. واژه های کلیدی: مسئله درجه/ قطر، نقصان، گراف دو بخشی مور، کران دو بخشی مور، چند جمله ای دیکسون نوع دوم

کران هایی برای مجموع و حاصل ضرب مقادیر ویژه لاپلاسین و لاپلاسین بدون علامت گراف ها
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1393
  فیروزه اشرف   بهروز طایفه رضایی

فرض کنید g گرافی n رأسی باشد. مقادیر ویژ? لاپلاسین بدون علامت و لاپلاسین g که به صورت نزولی مرتب شده اند را به ترتیب با q_1 (g)???q_n (g)?0 و ?_1 (g)????_(n-1) (g)??_n (g)=0, نمایش می¬دهیم. حدسی در مورد مقادیر ویژ? لاپلاسین گراف¬ها بیان می کند که ?_1 (g)-?_(n-1) (g)?n-1 یا به طورمعادل ?_1 (g)+?_1 (¯g)?2n-1 که در آن ¯g گراف مکمل g است. در این رساله، این حدس را برای گراف¬های دوبخشی ثابت می¬کنیم. به¬علاوه برای هر گراف دوبخشی g نشان می¬دهیم ?_1 (g)?_1 (¯g)?n(n-1)) . توجه کنید که برای گراف¬های دوبخشی مقادیر ویژ? لاپلاسین و مقادیر ویژ? لاپلاسین بدون علامت یکسان هستند. آچیچه و هنسن حدس زده¬اند که q_1 (g)+q_1 (¯g)?3n-4 و) . q_1 (g)q_1 (¯g)?2n(n-2) حدس اول را ثابت و حدس دوم را با ارائه خانواده¬ای از گراف¬های hn که برای آن¬ها q_1 (h_n)q_1 (¯(h_n )) از مرتب? 2.15n^2+o(n) است، رد می¬کنیم. اگر تعداد یال¬های g را با e(g) نشان دهیم و s_k (g)=q_1 (g)+?+q_k (g) ، حدس می¬زنیم که s_k (g)?e(g)+((k+1)¦2) برای k=1,…,n. این حدس را به¬ازای k=2 برای هر گراف n رأسی g و به¬ازای هر k برای تمامی گراف¬های منتظم ثابت می¬کنیم. حدس فوق مشابه حدسی از براور درمورد مقادیر ویژ? لاپلاسین است. در میان سایر نتایج، دو حدس دیگر در مورد مجموع توان¬های مقادیر ویژ? لاپلاسین بدون علامت گراف¬ها نیز رد شده-اند.

طیف گرافها و رابطه آن با بعضی از پارامترهای گراف
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه تهران 1386
  ملیحه چاووشی   حمیدرضا میمنی

چکیده ندارد.