نام پژوهشگر: خداداد نظری
انسیه گنجی باباخانی جعفر توفیقی
دو گروه از مواد پروسکایتی baxsr1-xco0.8fe0.2o3-? (x=0, 0.3, 0.5, 0.7, 0.9, 1) وba0.5sr0.5co0.8fe0.1m0.1o3-? (m=cr, ce, mn, fe, co, al, ni) با استفاده از روش کمپلکس edta و سیترات تهیه شدند. در این تحقیق، با روش ترکیب آنالیزهای xrd، o2-tpd، h2-tpr و tga-dta، اثر جانشینی جزئی استرانسیم با باریم در سایت a مواد پروسکایتی srco0.8fe0.2o3-?(scfo) بر ساختار کریستالی، میزان آزاد شدن اکسیژن از شبکه کریستالی مواد و پایداری فازی، مورد بررسی قرار گرفت. همچنین با دستگاه ساخته شده دما بالا، عبوردهی اکسیژن از این غشاء ها مطالعه شد. در بین این مواد ba0.5sr0.5co0.8fe0. 2o3-?، در تمامی دماها، عبوردهی نسبتا بالایی را نشان داد، به طوریکه در دمای oc950، میزان عبور دهی اکسیژن به cm3/cm2.min 25/2 رسید. ضمن اینکه هیچکدام از آنالیز های مورد استفاده، انتقال فازی در این نمونه را، حتی در دماهای بالا نیز نشان ندادند و الگوی پراش اشعه ایکس بعد از آنالیز o2-tpd نشان داد که ورود باریم در ساختار srco0.8fe0.2o3-? باعث تثبیت ساختار پروسکایتی این غشاها بعد از فرآیند عبوردهی اکسیژن می شود. اثر پارامترهای عملیاتی چون دما، فشارجزیی اکسیژن در جریان بالادستی،شدت جریان بالادستی و پایین دستی و ضخامت غشاء بر شار اکسیژن عبوری از غشاء ba0.5sr0.5co0.8fe0.2o3-? مطالعه گردید. دمای عملیات بین oc 950- 700، شدت جریان هوا و هلیوم (به عنوان گاز حامل)، به ترتیب برابر cm3/min 125-17 و cm3/min200-13 و فشار جزئی اکسیژن برابر atm 1- 0 بود. مطالعه وابستگی شار اکسیژن به ضخامت، جهت بررسی مرحله کنترل کننده در عبور اکسیژن برای این غشاء مورد استفاده قرار گرفت. نتایج نشان داد که اگر در شرایط عملیاتی صنعتی با افزایش فشار هوا، فشار جزئی اکسیژن به (atm) 1 برسد، شار عبور اکسیژن غشاء به حدود (cc/min cm2) 5 می رسد که این مقدار بسیار به لحاظ اقتصادی در مقیاس صنعتی، مقبول می باشد. افزایش شدت جریان هلیوم و هوا به ترتیب بالاتر از حدود 50 و ml/min 100 ، تاثیری بر میزان عبور دهی اکسیژن ندارد. همچنین ملاحظه شد که با کاهش ضخامت غشاء از mm9/1 به mm65/1، انرژی فعالیت تغییر خیلی کمی کرده است و با کاهش بیشتر ضخامت غشاء از 65/1 تا mm84/0، انرژی فعالیت از 5/41 به kj/mol 89/55 افزایش می یابد. این مشاهده نشانگر آنست که در ضخامتهای بالای mm65/1، شار عبور اکسیژن توسط مرحله نفوذ از توده کنترل می شود و در مقادیر پایینتر ضخامت غشاء، مرحله تبادلی سطحی نیز تاثیرگذار بوده است. در مرحله بعد، اثر جانشینی جزئی آهن با سایر کاتیونهای al, co, cr, ce, ni, mn, fe در سایت b مواد پروسکایتی ba0.5sr0.5co0.8fe0.2o3-? بر ساختار فازی، میزان عبور دهی اکسیژن، پایداری فازی و انحراف استوکیومتری مورد بررسی قرار گرفت. نتایج نشان داد زمانی که نیکل در سایت b کمپلکس اکسیدی bscfo، جانشین آهن می شود، میزان عبوردهی اکسیژن را از 2/2 تا cm3/cm2.min2/3 افزایش میدهد، ضمن اینکه روی خواص احیاء پذیری تاثیری منفی ندارد و همچنین ساختار فازی آن بعد از فرآیند دفع و جذب اکسیژن پایدار می ماند. لذا پروسکایتba0.5sr0.5co0.8fe0.1ni0.1o3-? برای فرآیند غشاء راکتور واکنش اکسیداسیون جزئی متان انتخاب شد و عملکرد آن با غشاء ba0.5sr0.5co0.8fe0.2o3-?مورد مقایسه قرار گرفت. دمای عملیات بین oc 950- 750، شدت جریان هوا و متان رقیق شده، به ترتیب برابر cm3/min 250-50 و cm3/min 60-15 و غلظت متان 70%-10% بود. زمان رسیدن به حالت پایدار غشاء bscfnio حدود 5 ساعت است که این مقدار یک سوم زمان حالت پایدار bscfo می باشد. غشاء راکتور bscfnio عملکرد خوبی نشان داد به طوریکه در دمای oc 850، میزان تبدیل متان ، گزینش پذیری co و شار عبور اکسیژن به ترتیب برابر98% ، 5/97% و cm3/cm2.min 7/11حاصل شد. میزان تبدیل متان و شار اکسیژن برای غشاء bscfnio ، به ترتیب به اندازه 5/22% و 8/25% بیشتر از غشاء bscfo است حال آنکه گزینش پذیریco چندان تغییر نکرده است. جهت بررسی پایداری غشاء بعد از واکنش ، آنالیزهای xrd و sem بر روی غشاء مصرف شده انجام شد و نتایج نشان داد که بعد از واکنش، برای دو سطح غشاء که در معرض هوا و در معرض محیط احیاء کننده قرار گرفته بودند، ساختار پروسکایتی حفظ شده است.
محبوبه محمدطاهری خداداد نظری
امروزه توجه ویژه ای به بررسی اثر حضور افزودنی های گوناگون بر سه مرحله اصلی فرآیند ذخیره سازی و انتقال گاز به کمک فناوری هیدرات های گازی، شامل تشکیل هیدرات گازی، پایداری هیدرات در شرایط ذخیره سازی و بازیابی گاز از طریق تجزیه هیدرات معطوف شده است. در بخش اول این رساله، یک روش عمومی برای به دست آوردن داده های قابل اطمینان تعادل فازی هیدرات های گازی تدوین شد. این روش، بر پایه چرخه تشکیل و تجزیه هیدرات گازی در حجم ثابت است. با مقایسه تجزیه هیدرات متان طبق الگوهای متفاوت گرمایشی (پیوسته یا مرحله ای) مشاهده شد که مسیر گرمایش مرحله ای پتانسیل تجزیه هیدرات را در مسیر شبه تعادلی دارد چون با انتخاب بازه دمایی مناسب و اختصاص زمان کافی جهت ثابت شدن تعداد مول های فاز گازی در هر مرحله همدما سامانه به تعادل ثانویه خواهد رسید. در بخش دوم، تاثیر حضور پلیمر زنجیر بلند محلول در آّب هیدروکسی اتیل سلولز (hec) بر هیدرات متان در مخزن تحت فشار به صورت استاتیک بررسی شد. از دو وزن مولکولی متفاوت (250000 و 90000mw~ ) با غلظت های وزنی 1000 و ppm 5000 استفاده شد. با استفاده از روش تدوین شده در بخش اول برای دست یابی به منحنی های فازی هیدرات، مشاهده شد که هیدروکسی اتیل سلولز 250000 با غلظت وزنی ppm 5000 منحنی تعادل فازی هیدرات متان را جابه جا نمی کند. از دیدگاه سینتیک تشکیل هیدرات، حضور هیدروکسی اتیل سلولز با تسریع هسته سازی اولیه هیدرات زمان القا را به صورت قابل توجهی کاهش داد. اما در مورد رشد بلورهای هیدرات، بسته به وزن مولکولی و غلظت وزنی پلیمر، فقط عملکرد هیدروکسی اتیل سلولز 90000 با غلظت وزنی ppm 5000 در راستای بهبود ذخیره سازی گاز قابل توجه بود. پایداری هیدرات در فشار های ملایم حدود bar 13 و دماهای بالا و زیر نقطه انجماد از طریق ردیابی تجزیه هیدرات در سامانه حجم ثابت بررسی شد. با مطالعه پایداری هیدرات متان در زیر نقطه انجماد، مشاهده شد اگر چه حضور این پلیمر در مجموع اثر خود نگهداری هیدرات متان زیر نقطه انجماد را تضعیف می کند، اما هیدروکسی اتیل سلولز 90000 با غلظت وزنی ppm 5000 برای ذخیره سازی طولانی مدت گاز تحت فشار ملایم bar 13 و دمای زیر نقطه انجماد مناسب تر است. با مقایسه سینتیک تجزیه هیدرات در دما های بالاتر از نقطه انجماد، این شرایط با هدف بازیابی گاز پیشنهاد می شود.
نوشین قلی پور زنجانی خداداد نظری
امروزه استفاده از تشکیل هیدرات گازی به عنوان روشی برای جداسازی گازها رو به افزایش می باشد. ترکیب کریستالی که از مولکول های آب و مولکول های گاز میهمان که در حفره های هیدرات محبوس شده اند تشکیل می شود، می تواند با توجه به ترکیب گاز اولیه متفاوت باشد. استفاده از یک محیط متخلخل نانوساختار مانند ترکیبات سیلیکا می تواند با توجه به مساحت سطح، حجم حفره، توزیع اندازه حفره و نوع محیط متخلخل، روی ترکیب گاز محبوس در حفره های هیدرات موثر باشد. در این رساله اثر چند محیط متخلخل نانوساختار با پایه سیلیکا روی تشکیل هیدرات گاز طبیعی و مخلوط سه جزئی متان/ اتان /پروپان به دو روش تولید هیدرات از یخ و تولید هیدرات از آب بررسی شده است. میزان ذخیره سازی گاز در فاز هیدرات، توزیع اجزاء گاز خوراک در دو فاز هیدرات و گاز و میزان خالص سازی متان در فاز گازی بررسی گردیده است. یکی از محیط های متخلخل mcm41 می باشد که عامل آمین و عامل oh روی آن نشانده شده و اثرات این اصلاح شیمیایی نیز در تشکیل هیدرات بررسی شده است. افزودن مقدار کمی (1% وزنی و 5% وزنی) از این محیط متخلخل نانوساختار به آب، به میزان قابل توجهی (حدود 44%) ذخیره سازی گاز در فاز هیدرات را، در شرایط تشکیل هیدرات از یخ افزایش می دهد. در شرایط تشکیل هیدرات از آب، حضور mcm41 منجربه افزایش خالص سازی متان در فاز گازی شده و حضور mcm41-nh2 به میزان قابل توجهی ذخیره سازی گاز در فاز هیدرات را افزایش می دهد. جداسازی گاز متان از مخلوط گاز سه جزئی متان/ اتان/ پروپان در دومرحله تشکیل متوالی هیدرات بازده خوبی را نشان می دهد. رفتار تشکیل و تجزیه هیدرات در شرایط حضور 5% وزنی mcm41 و zsm5 نسبت به آب بررسی گردید. منحنی تعادلی مایع –هیدرات- گاز در حضور mcm41 به سمت شرایط بازدارندگی تشکیل هیدرات جابجا می شود، ولی zsm5 جابجایی قابل توجهی در منحنی تعادلی ایجاد نمی کند.
مرضیه زارع علی حق طلب
هدف اصلی این تحقیق بررسی اثر مایعات یونی /گلایکول اتر در بازدارندگی از تشکیل هیدرات می باشد. در این راستا فعالیت های انجام شده در این تحقیق به دو بخش مدلسازی و آزمایشگاهی تقسیم گردیده است. در قسمت آزمایشگاهی، از راکتور تحت فشار برای انجام آزمایش های سینتیکی و ترمودینامیکی استفاده شده است. در بخش آزمایش های ترمودینامیکی تشکیل هیدرات گاز متان در حضور پنج مایع یونی بر پایه ایمیدازولیم بررسی و مایعات یونی [oh-emim][bf4] ، [bmim][meso4]و [emim][hso4] بهترین عملکرد را داشتند. مایعات یونی مذکور با غلظت 10 درصد وزنی منحنی تعادلی متان را بین 25/0 تا 1/1 درجه سلسیوس به سمت چپ انتقال می دهند و خاصیت بازدارندگی ترمودینامیکی را دارا می باشند. اثر غلظت بر قدرت ممانعت کنندگی مایع یونی [oh-mim][bf4] بررسی و معین گردید به طوریکه با افزایش غلظت مایع یونی قدرت بازدارندگی ترمودینامیکی افزایش می یابد. همچنین با بررسی اثر نوع گاز مشخص شد که اثر بازدلرندگی ترمودینامیکی مایع یونی [emim][hso4] در تشکیل هیدرات متان به مراتب بیشتر از هیدرات گاز طبیعی است. با بررسی اثر ماده اتیلن گلیکول منو اتیل اتر بر نحوه عملکرد مایع یونی [oh-emim][bf4] در تشکیل هیدرات متان و گاز طبیعی مشخص گردید که وجود اتیلن گلیکول منو اتیل اتر موجب افزایش قدرت بازدارندگی می گردد. در بخش آزمایش های سینتیکی زمان القا و میزان نرخ تشکیل هیدرات متان در حضور محلول پنج مایع یونی بر پایه ایمیدازولیم اندازه گیری شد و معین گردید که دو مایع یونی [emim][etso4] و [bmim][meso4] دارای نقش بازدارندگی سینتیکی داشته و سایر مایعات یونی شامل [emim][hso4] ، [oh-emim][bf4] و [bmim][bf4] نقش تسریع کنندگی را دارند. با بررسی اثر فشار اولیه و اثر میزان ابر سرمایش بر زمان القا نمونه های مختلف معین شد که افزایش فشار اولیه و میزان ابر سرمایش موجب کاهش میزان زمان القا نمونه های مختلف گردید. اثر egee در دو غلظت 75/0 و 10 درصد وزنی در حضور محلول مایعات یونی [bmim][meso4] و [oh-emim][bf4] بررسی شد. نتایج آزمایشات سینتیکی معین نمود که egee با غلظت 75/0 درصد وزنی دارای نقش تسریع کنندگی بوده و در مجاورت دو مایع یونی مذکور با غلظت 5/0 درصد وزنی موجب گردیده که این سامانه ها نقش تسریع کنندگی را در تشکیل هیدرات متان ایفا نمایند. همچنین با افزایش غلظت egee به 10 درصد وزنی، دو سامانه نقش بازدارندگی را ایفا نمودند. در بخش مدلسازی، معادله حالت ecsw (الکترولیت- مکعبی چاه مربعی ) برای محاسبه فوگاسیته و شرایط تشکیل هیدرات گازهای مختلف ارائه شده و پس از محاسبه پارامترهای مدل شرایط تشکیل هیدرات های گازی اعم از دما و فشار برای سامانه های تک گازی، مخلوط، گاز طبیعی پیش بینی شده است. میزان درصد خطای مطلق متوسط برای سامانه های مخلوط دو تایی و گاز طبیعی به ترتیب 46/9 و 29/9 درصد بوده که در مقایسه با خطاهای مربوط به مدل های pr، srk و hwhyd کمتر می باشد. همچنین در ادامه فشار تشکیل هیدرات سامانه های گازهای تک جزئی و دو جرئی در حضور الکترولیت ها با استفاده از معادله حالت ecsw محاسبه و نتایج پیش بینی نیز با سایر مدلها مقایسه گردید . میزان درصد خطای متوسط مطلق مدل مذکور 62/5 درصد می باشد. این مدل خطای کمتری در مقایسه با سایر مدلها دارد. در بخش پایانی نیز فشار تشکیل هیدرات متان در حضور مایعات یونی مختلف پس از محاسبه پارامترهای مدل، پیش بینی گردیده و با داده های تجربی اندازه گیری شده در این تحقیق مقایسه شده است. محدوده خطای متوسط مطلق پیش بینی فشار تشکیل هیدرات متان در حضور مایعات یونی با استفاده از مدل بین 1تا 2 درصد می باشد.
خداداد نظری بابک نادرپور
بدنبال تغییر و تحولات بنیادین دهه ???? و وقوع حادثه ?? سپتامبر در سال ????و بوجود آمدن محیط امنیتی جدید در صحنه بین الملل، شاهد دو نوع رویکرد در سیاست خارجی ایالات متحده در قبال تحولات خارجی می باشیم که یکی با مطرح کردن فاکتورهایی چون برخورد با عامل تروریسم، کشورهای سرکش و تسلیحات کشتار جمعی به همراه فناوری و رادیکالیسم، سعی در اجرای سیاست یکجانبه گرایی با تکیه بر قدرت نظامی و تحمیل آن بر ساختار نظام بین الملل دارد که در دوره جرج واکر بوش اجرا می شد .در طرف دیگر می توان سیاست خارجی اوباما را باتغییری محسوس،تابعی از نیازها و ضرورت های ساختاری در داخل ایالات متحده تعریف کرد . سوال اصلی در این پژوهش این است که، چه عواملی در رویکرد یکجانبه گرای جرج بوش و چندجانبه گرایی اوباما در قبال اروپا تاثیر گذار بوده اند؟ و فرضیه ای که به دنبال اثبات آن هستیم، این است که، سیاست خارجی بوش و اوباما در عین حال که به تبعیت از تعریف یکسان آنها از منافع ملی آمریکا شکل گرفته است، متأثر از فضای خاص حاکم بر جهان بوده است و این نوسانات بر نوع سیاستگذاری آنها تأثیر گذاشته است. بنابراین تحقیق حاظر مشتمل بر پنج فصل سازماندهی شده است بطوریکه در فصل اول ،کلیات تحقیق را که در برگیرنده بیان مساله، سئوالات تحقیق، فرضیات تحقیق، چارچوب نظری تحقیق، اهداف تحقیق، اهمیت و ضرورت تحقیق، روش تحقیق و محدودیت های تحقیق، مورد بررسی و مطالعه و بحث قرار می گیرد. در فصل دوم تحقیق نیز که مبانی تئوریک و چارچوب نظری تحقیق اختصاص داده شده است، و در آن نظریه ها و تئوریهای مرتبط با قدرت،همچون نظریه های هژمونی طرح شده است. فصل سوم: پیشینه تاریخی روابط ایالات متحده آمریکا در قبال اروپا بعد از فروپاشی شوروی تا روی کار آمدن جورج بوش (پسر) فصل چهارم: تشابه و تفاوت سیاست خارجی جرج بوش و اوباما در قبال اروپا پس از تحولات 11 سپتامبر و در فصل پنجم نیز نتیجه گیری شده و در آخر منابع آورده می شود.