نام پژوهشگر: محمد رضا رجب زاده مقدم

بررسی مرتبه خودریختی ها و خودریختی های حافظ رده
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد 1389
  جواد دانشمند   محمد رضا رجب زاده مقدم

فرض کنید gیک p-گروه متناهی و |g|=pn باشد . به ازای هر x?g رده تزویج x را با xg نشان می دهیم و گروه خودریختی های gرا aut(g) در نظر می گیریم . خودریختی ? از گروه متناهی g را خودریختی حافظ رده می نامند هرگاه به ازای هر x?g ، ?(x)=x^g ، مجموعه تمام خودریختی های حافظ رده از گروه g را با autcp(g) نشان می دهند . اگر قرار دهیم outcp(g)=autcp(g)/inn(g) در این صورت این فاکتور گروه را مجموعه خودریختی های حافظ رده خارجی از گروهg می نامند در این پاین نامه ما به محاسبه مرتبه خودریختی های حافظ رده خارجی در چند p-گروه خاص می پردازیم.

خودریختی های مرکزی یک گروه که تقریبا داخلی اند.
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی 1389
  محمد امین رستم یاری   محمد رضا رجب زاده مقدم

چکیده ندارد.

2-گروه های 2مولدی کلاس 2 ومحاسبه ی تانسور های مربعی نا آبلی آن ها
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده ریاضی 1392
  یونس عظیمی   محمد رضا رجب زاده مقدم

دراین پایان نامه ابتداp-گروه هاو گروه های پوچ توان کلاس 2 را معرفی کرده و چندین خاصیت مقدماتی آن هارا بیان می کنیم.سپس 2-گروه های 2 مولدی کلاس 2 را دسته بندی می کنیم.در ادامه حاصلضرب تانسوری ناآبلی گروه ها راتعریف می کنیم که از آن تعریف تانسورمربعی ناآبلی یک گروه نتیجه می شود.سپس با بیان چند خاصیت به محاسبه ی تانسور های مربعی نا آبلی یک گروه فرادوری متناهی شکافنده و گروه های دسته بندی شده فوق می پردازیم.