نام پژوهشگر: سعید صالحی پورمهر
مهدی عابدینی سعید صالحی پورمهر
در این پایان نامه، با یک روش توصیفی، نظرات لاوور در نظریه رسته ها با استفاده از زبان نظریه مجموعه ای ارائه و توسعه داده می شوند.ضمنا چگونگی ایجاد و تکوین پارادکس های خودارجاعی، ناتمامیت و قضایای نقطه ثابت از قضیه تعمیم یافته کانتور تشریح خواهند شد. همچنین این رویه برای پارادکس دروغگو، پارادکس گرلینگ و ریچارد، مساله توقف تورینگ، مساله اراکل دار p=np ، پارادکس سفر در زمان، گزاره های پریخ، پارادکس لب و قضیه رایس تعمیم داده میشود.
سیامک بیانی جعفر صادق عیوضلو
در نظریه ی مدل اصلی ترین و مهمترین کار در بررسی ساختارها، مشخص کردن زیرمجموعه های تعریف پذیر و توابع تعریف پذیر در آن ساختارها می باشد. مشخص کردن زیرمجموعه ها و توابع تعریف پذیر راه مطالعه ی این ساختارها را هموار خواهد کرد. در این پایان نامه سعی شده زیر مجموعه ها و توابع تعریف پذیر در زوج های چگال از ساختارهای ت-کمینه مشخص شوند.(یک ساختار را ت-کمینه می نامیم هرگاه زیر مجموعه های تعریف پذیر آن اجتماع متناهی از بازه ها باشند.) برای این منظور رابطه ی تعریف پذیری در زوج چگال(b,a) با تعریف پذیری در ساختار a و تعریف پذیری در ساختار b مشخص شده است. یکی از نتایج جالبی که بدست آمده است این است که اگر b یک بسط از میدان مرتب اعداد حقیقی و مجموعه ی باز s در زوج چگال (b,a) تعریف پذیر باشد، آنگاه s در ساختار b نیز تعریف پذیر است.
سمیه تاری جعفرصادق عیوضلو
در این پایان نامه که مبتنی بر نتایج منبع [11] نوشته می شود، ضمن مرور برخی خواص ساختارهای ت-کمینه از جمله یکنوایی قوی و تجزیه سلولی بررسی آنها برای ساختارهای ت-کمینه ضعیف نشان داده خواهد شد که هر بسط ت-کمینه ضعیف غیرارزیابی از یک گروه مرتب دارای خواص تجزیه سلولی و یکنوایی قوی می باشد. همچنین برای ساختارهای ت-کمینه ضعیف با خاصیت تجزیه سلولی قوی توسیع ت-کمینه متعارف ساخته میشود. در پایان صورت ضعیفی از مشخصه اویلر برای ساختارهای ت-کمینه ضعیف ارائه می گردد.
فاطمه آذرپیوند سعید صالحی پورمهر
دراین پایان نامه با به کار گرفتن متناقض نمای گرلینگ از عبارات خونامصداق، یک اثبات معنایی از قضیه ی دوم ناتمامیت گودل ارائه می کنیم. برای نظریهt شامل zf جمله het_t را می سازیم که به طور شهودی بیان می کند محمول "خودنامصداق" خودش، خودنامصداق است. نشان می دهیم که این جمله از t نتیجه نمی شود و با سازگاری t معادل است. بالاخره نشان می دهیم چگونه یک برهان ناتمامیت مشابه برای حساب پئانو بسازیم.
مینا محمدیان سعید صالحی پورمهر
این حقیقت که قضیه مشهور ناتمامیت گودل و الگوی اصلی تمامی پارادوکس های منطقی از جمله پارادوکس دروغگو، به صورت نزدیکی با هم ارتباط دارند، نه تنها شناخته شده است بلکه وجه مشترکی از دانسته های منطق دانان محسوب می شود. در واقع، تقریباً تمام بحث های صوری این قضیه [ناتمامیت گودل] کمابیش پلی بر این ارتباط می سازند. در این پایاننامه سعی بر نشان دادن این ارتباط خواهیم داشت.
شکوفه صادقی بی غم سعید صالحی پورمهر
توسط محاسبات نمادین اثبات های ساده ای برای تصمیم ناپذیری منطق مرتبه اول و نظریه های ساختارهای پایه ای (مانند الحاق یا حساب) به دست می آیند. با استفاده از دستورزبان ها یک اثبات برای نشان دادن اینکه اعتبار در منطق مرتبه اول تصمیم ناپذیر است (برای فرمول هایی با سور پیشوند ?? در زبان شامل حداقل یک رابطه یک تایی و تابع دوتایی) ارایه می کنیم. یک اثبات مشابه، قضیه ناتمامیت اول گودل برای ساختار رشته ها را نتیجه می دهد. تصمیم ناپذیری نظریه حساب با توجه به این موضوع که «اعمال جمع و ضرب می توانند به طور مستقیم الحاق رشته ها را رمزنگاری کنند» به دست می آید.
ولی دل ارا مغانلو سعید صالحی پورمهر
پارادُکس یابلو از چالش برانگیزترین مباحثی است که اخیراً مورد نقد و بررسی فیلسوفان، ریاضی دانان و حتی دانشمندان علوم کامپیوتر قرار گرفته است. در این پارادکس با معرفی یک سری بی پایان از جملاتی که خود-متناقض نیستند، ولی از وجود این بی نهایت جمله تناقض نتیجه می شود، ظاهراً از دور و تسلسل دوری می گردد. در حقیقت هر جمله از دنباله یابلو بیان می کند که تمامی جملات پس از او همگی نادرستند. می توان دید که وجود چنین دنباله ای از جملات به تناقض منجر می شود.
سجاد غنی زاده زارع سعید صالحی پورمهر
-
محمدصالح زرزا جعفر صادق عیوضلو
چکیده ندارد.