نام پژوهشگر: سید مجید جعفریان امیری
فاطمه محمدپور ضیایی سید مجید جعفریان امیری
فرض کنیدg یک گروه غیر آبلی باشد. گراف ناجابجایی را چنین تعریف می کنیم گرافی که مجموعه رئوس آن عناصر غیرمرکزیg باسند و هر دو راس آن به هم متصل می شوند اگر وفقط اگر با هم جابجا نشونددر یک گراف ساده متناهی بیشترین تعداد رئوس یک زیرگراف کامل القایی عدد خوشه نامیده می شود. در این پایان نامه همه گروه های غیرحل پذیر با عدد خوشه کمتر از 58 بررسی شده به طوری که عدد 57 عدد خوشه گراف ناجابجایی گروه خطی خاص تصویریpsl(2,7 است و عدد خوشه گروه های دووجهی خطی عام و خاص تصویری گروه های ساده مینیمال متناهی و زیرگراف برخی از گروه ها به دست می آید. هم چنین عناصر دوبه دو ناجابجایی گروه های خطی عام از بعد 3 را بررسی کرده و در نهایت عدد خوشه گراف ناجابجایی گروه مذکور را به دست می آوریم.
شمسی صفی لو سید مجید جعفریان امیری
ض کنید g یک گروه متناهی باشد. در اینصورت گراف را به صورت زیر تعریف می کنیم رئوس همان عنصر گروه g می باشد و دو راس به هم وصل می شوند اگر و تنها اگر آن دو راس کل گروه g را تولید کنند. عدد رنگی راسی کمترین تعداد رنگهایی می باشد که می توان یک گراف را رنگ آمیزی کرد به طوریکه دو راس مجاور همرنگ نباشند. زیر مجموعه x از رئوس را یک عدد دسته گوییم هرگاه زیر گراف القایی بر x یک گراف کامل باشد . ماکزیمم اندازه یک دسته در گراف را عدد دسته آن می گوییم. برای یک گروه متناهی غیردوری g ، پوشش کمین گروه g را تعریف می کنیم کمترین تعداد از زیرگروههای g که اجتماعشان g می باشد. نتایج و سوالات زیادی در مورد پوشش کمین وجود دارند . به عنوان مثال چه ارتباطی بین پوشش کمین و عدد دسته و عدد رنگی در رده های مختلف گروه ها اعم از گروه های پوچ توان و حل پذیر و ساده متناهی وجود دارد و ما در این پایان نامه به برخی از این ارتباطات می پردازیم .
حجت رستمی سید مجید جعفریان امیری
در این پایان نامه، به مطالعه گروههای تعمیم یافته پوچتوان و روابط بین آنها پرداخته می شود و نتایجی که درباره ساختار عناصر انگل راست و عناصر انگل چپ وجود دارد، مورد بررسی قرار می گیرد و ثابت می شود که در یک گروه g اگر $a$ عنصری از مرتبه متناهی باشد و b,b^{-1}، عناصر 4- انگل راست باشند و یا a^{-1},a عناصر 4- انگل چپ و b یک عنصر دلخواه باشد، آنگاه <a, a^{b}>، پوچتوان از رده حداکثر 4 است. همچنین ثابت می شود، که در یک گروه g برای هر عدد اول p و هر عنصر a که مرتبه آن توانی از p است و a,a^{-1} عناصر 4- انگل چپ می باشند. اگر p=2 آنگاه a^{4} به رادیکال بئر g تعلق دارد و اگر p یک عدد اول فرد باشد آنگاه a^{p}، در رادیکال بئر g قرار دارد.
صدیقه ابراهیمی قادی عباس جعفرزاده
گروه g را یک گروه موضعا دوری نامیم. اگر برای هر x و y در g ، زیر گروه < y و x> از g ، دوری باشد، در غیر اینصورت آن را غیر موضعا دوری نامیم. فرض کنیم g یک گروه غیر موضعا دوری باشد و { برای هر y?g ، < y و x> دوری است? x?g} = (g)yc c.گراف غیر دوری g که با g cنشان داده می شود. دارای رئوس (g)c yc gاست و دو رأس آن به هم وصل می شوند اگر یک زیر گروه دوری تولید نکنند. برای گراف ساده ?، (?) ? که عدد خوشه گراف ? را نشان می دهد، بزرگترین اندازه یک زیر گراف کامل ? می باشد. در این پایان نامه ما خواص این گراف را مطالعه کرده و خواص آن را به خواص گروه g مرتبط می سازیم. ما ثابت می کنیم که عدد خوشه g c متناهی است اگر g c هیچ خوشه نامتناهی نداشته باشدو همچنین گروه هایی را که عدد خوشه گراف غیر دوری آنها حداکثر 4 است رده بندی می کنیم.
سعید حسینی سید مجید جعفریان امیری
برای گروه متناهی $g$، فرض میکنیم $cent(g)$ نشان دهنده مجموعه مرکز سازهای تک عضوی های $gin g$ باشد. $g$ را $n$- مرکز ساز گوئیم هرگاه $|cent(g)|=n$ باشد. در این پایان نامه مقدار $|cent(g)|$ را برای برخی از گروه های متناهی $g$ محاسبه می کنیم و نشان می دهیم که برای هر عدد صحیح مثبت $n eq 2,3$ ، گروه متناهی با $|cent(g)|=n$ موجود است. ساختار گروه متناهی $g$ با $|cent(g)|=6$ را بررسی خواهیم کرد و نشان می دهیم گروه دلخواه و ?- مرکز ساز $g$ اولیه می باشد هرگاه: $frac{g}{z(g)}cong a_4$. همچنین نشان می دهیم که اگر $frac{g}{z(g)}cong a_4$ آنگاه ? یا$|cent(g)|=6$ می باشد و یک گروه $g$ ایجاد می کنیم به طوری که $frac{g}{z(g)}cong a_4$ و $|cent(g)|=8$ باشد. پس از ارائه رابطه ای جالب میان $|cent(g)|$ و بزرگترین زیرمجموعه دوبدو جابجا نشونده از اعضای $g$، همه گروه های متناهی $n$- مرکز ساز برای $n=7,8$ را مشخص می نماییم. با استفاده از این نتیجه نشان می دهیم که گروهی متناهی به طوری که $|cent(g)|=|cent(frac{g}{z(g)})|=8$ وجود ندارد.
محمد مهدوی گلوجه سید مجید جعفریان امیری
فرض کنید g یک گروه متناهی باشد و (?(g را مجموع مرتبه ی عناصر گروه g در نظر بگیرید. قضیه ی اصلی ما در این پایان نامه، این است که برای زیرگروه سره ی h از گروه متقارن sn، که h متمایز از گروه متناوب an می باشد، نشان دهیم: .(?(an)>?(h برای این کار نشان خواهیم داد که برای هر زیرگروه ماکسیمال h از sn، کهh متمایز از گروه متناوب an باشد، همواره داریم: .(?(an)> ?(h طبق قضیه ی اسکات، هر زیرگروه ماکسیمال m از sn، در یکی از سه دسته ی غیرانتقالی، انتقالی اولیه و انتقالی غیراولیه قرار می گیرد. ابتدا نشان خواهیم داد که اگر h یک زیرگروه غیرانتقالی ماکسیمال از sn باشد، آنگاه .(?(an) > ?(h و در گام دوم نشان می دهیم که اگر h زیرگروه ماکسیمال انتقالی از sn باشد که متمایز از گروه متناوب an است، آنگاه .(?(an) > ?(h
سمیه رحمت آبادی حبیب امیری
فرض کنید $ g $ گروهی متناهی ?(g) نشان دهنده ی مجموع مرتبه ی عناصر گروه g باشد. ماکسیمم مقدار ? روی همه ی گروه های از مرتبه ی n ، به طوری که n عدد صحیح مثبتی است در گروه های دوری اتفاق می افتد. همچنین اگر گروه غیر پوچتوانی از مرتبه ی n موجود باشد، آن گاه مینیمم مقدار ? در یک گروه غیر پوچتوان اتفاق می افتد. همچنین در ادامه برخی از ویژگی های مجموع مرتبه ی عناصر گروه های آبلی متناهی را بررسی می کنیم.
سعید حاجی سید مجید جعفریان امیری
فرض کنید g یک گروه متناهی و x?g یک عنصر دلخواه باشد. مرکزساز عنصر x در g را که با c_g (x) نشان می دهیم به صورت c_g (x)={g?g|gx=xg}تعریف می شود. مجموعه ی همه ی مرکزسازهای گروه g را با cent(g) نشان می دهیم. g را n-مرکزساز گوییم اگر |cent(g)|=nو اگر|cent(g)|=|cent(g/z(g) )|=n باشد آنگاه g را n-مرکزساز اولیه گوییم. در این پایان نامه ما روی گروه هایی که بیشتر از 21 مرکزساز دارند تحقیق می کنیم و نشان می دهیم که اگر g یک گروه متناهی باشد و g/z(g) ?a_5، آنگاه g، 22-مرکزساز یا 32-مرکزساز است. بعلاوه a_5 در حد یکریختی تنها گروه ساده ی 22-مرکزساز است. همچنین ما |cent(g)| را برای همه ی گروه های ساده ی مینیمال بدست می آوریم. با استفاده از این نتیجه ثابت می کنیم که گروه های ساده ی g و h موجودند به قسمی که |cent(g)|=|cent(h)| ولی g?h. در ادامه همه ی گروه های نیم ساده ی g که |cent(g)|?73 است را مشخص می کنیم.
علیرضا کیوان سید مجید جعفریان امیری
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،مولفان سعی کردند تا گرافی مناسب برای قطر گراف جابجایی گروه های ساده غیر آبلی متناهی بیابند. در مولفان شرایطی را بررسی کردند که تحت آنها گراف ناجابجایی یک گروه متناهی،مسطح یا همیلتونی بوده و اطلاعات مفیدی راجع به آن ارائه دادند. همچنین حدس زیر نیز در مطرح گردید که بعدا در ،جواب مثبتی برای تعدادی از گروه ها در آن داده شد. حدس aam: فرض کنیمm یک گروه ساده غیر آبلی متناهی و g یک گروه غیر آبلی باشد اگر ،آنگاه باید داشته باشیم . در این پایان نامه ، قصد داریم گراف جابجایی گروه های متقارن و متناوب را بررسی نموده وشرایط همبندی ، قطر، عدد خوشه و عدد استقلال آنها را بیابیم. همچنین گراف ناجابجایی گروه دو وجهی را مورد بررسی قرار خواهیم داد.
مریم عطایی سید مجید جعفریان امیری
یک پوشش برای گروه مفروض g، عبارت است از گردایه ای از زیرگروههای سره ی g که اجتماع آنها برابرg است. پوششی را کاهش یافته می گوییم که هیچ یک از زیرمجموعه های سره ی آن، پوشش نباشند و همچنین پوششی را ماکسیمال می گوییم که همه ی اعضای آن زیرگروه ماکسیمال باشند. یک پوشش با n عضو برای عدد صحیح n>2، n- پوشش نامیده می شود. اشتراک همه ی اعضای پوشش را با d نشان داده و هرگاه ?core?_g d=d_g=1 باشد می گوییم g دارای اشتراک هسته – آزاد است. یک پوشش مانند ? از گروه g را ?_n - پوشش می گوییم هرگاه ? یک n - پوشش هسته – آزاد ماکسیمال کاهش یافته برای g باشد، که در این صورت به خود g نیز?_n گروه گفته می شود. در این پایان نامه، قصد داریم شرط نیم ساده بودن و پوشش گروه ها توسط زیرگروه ها را بررسی نموده و نشان دهیم که گروه های نیم ساده، ?_6– پوشش و ?_7– پوشش ندارند. همچنین ?_7– گروه های غیر نیم ساده را طبقه بندی می کنیم. در انتها برخی از قضایای مربوط به?_6– گروه ها را مورد بررسی قرار خواهیم داد.
یونس عابدی سید مجید جعفریان امیری
یک پوشش برای گروه مفروض g، عبارت است از گردایه ای از زیرگروه های سره ی g که اجتماع آنها برابر g است. در [6]، کوهن، کوچکترین عدد صحیح n را به طوریکه اجتماع n زیرگروه سره برابرg است، (?(g تعریف کرده است. برخی نتایج اثبات شده از گروه های حل پذیر، به حدس اینکه اگر g یک گروه متناهی غیر دوری باشد در این صورت ?(g)=p^?+1 است، منجر می شود به طوریکه در آن p^?، مرتبه یک فاکتور اصلی از g است. در این زمینه حدس زده شده است که برای هر گروه متناهی g داریم 11 و ?(g)?7 و در این پایان نامه به تشریح اثبات حدس های مذکور می پردازیم.
یونس عابدی سید مجید جعفریان امیری
یک پوشش برای گروه مفروض g، عبارت است از گردایه ای از زیرگروههای سره ی g که اجتماع آنها برابرg است. پوششی را کاهش یافته می گوییم که هیچ یک از زیرمجموعه های سره ی آن، پوشش نباشند و همچنین پوششی را ماکسیمال می گوییم که همه ی اعضای آن زیرگروه ماکسیمال باشند. یک پوشش با n عضو برای عدد صحیح n>2، n- پوشش نامیده می شود. اشتراک همه ی اعضای پوشش را با d نشان داده و هرگاه ?core?_g d=d_g=1 باشد می گوییم g دارای اشتراک هسته – آزاد است. یک پوشش مانند ? از گروه g را ?_n - پوشش می گوییم هرگاه ? یک n - پوشش هسته – آزاد ماکسیمال کاهش یافته برای g باشد، که در این صورت به خود g نیز?_n گروه گفته می شود. در این پایان نامه، قصد داریم شرط نیم ساده بودن و پوشش گروه ها توسط زیرگروه ها را بررسی نموده و نشان دهیم که گروه های نیم ساده، ?_6– پوشش و ?_7– پوشش ندارند. همچنین ?_7– گروه های غیر نیم ساده را طبقه بندی می کنیم. در انتها برخی از قضایای مربوط به?_6– گروه ها را مورد بررسی قرار خواهیم داد.