نام پژوهشگر: محمود منجگانی

نگاشت های جداکننده روی جبرهای توابع پیوسته
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1388
  فریده ترکاشوند   رسول نصر اصفهانی

قضیه ی معروف استون – باناخ بیان می کند که طولپایی های پوشا از (c0(x به (c0(y عملگرهای ترکیبی وزندار هستند، که در آن x و y دو فضای موضعاً فشرده و هاسدورف می باشند. در این پایان نامه به بررسی ساختارعملگرهای ترکیبی وزندار از (c0(x به (c0(y می پردازیم و ثابت می کنیم هر طولپایی غیرپوشا و نگاشت های خطی جداکننده اساساً عملگرهای ترکیبی وزندار می باشند. همچنین خواص کلی نگاشت های خطی جداکننده-ی t از (c00(x به (c00(y را بررسی می کنیم یعنی نگاشت های t از جبر a به جبر b به طوری که برای هر f,g در a، با شرط fg=0 داشته باشیم، .tftg=0 درنهایت توصیفی کلی ازعملگرهای خطی فردهلم جداکننده از (c0(x به (c0(y ارایه می دهیم و ثابت می کنیم اگر y شامل نقاط منفرد نباشد یا t دارای برد بسته باشد، آن گاه t کراندار است.

نمایش های پیوسته c(k) و r-کرانداری
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1388
  مرضیه حسن نسب   فرید بهرامی

فرض کنیم x یک فضای باناخ و k یک فضای هاسدورف فشرده است. در این پایان نامه به معرفی اندازه های طیفی، شبکه های باناخ، نمایشهای پیوسته c(k) و r-کرانداری می پردازیم. هدف یافتن شرایطی است که تحت آن بتوان نمایش ?:c(k)?l(x) را به صورت انتگرال نسبت به یک اندازه ی طیفی منظم نوشت.به این منظور نخست یک شرط لازم و کافی برای وجود اندازه ی طیفی متناظر با ? ارائه می دهیم و سپس نشان می دهیم r-کرانداری نمایش ? یک شرط کافی برای وجود چنین اندازه ای است. در پایان دسته خاصی از فضاهای باناخ را مورد مطالعه قرار می دهیم و نشان می دهیم هر نمایش r-کراندار از c(k) بر فضاهای عضو این دسته به صورت جمع متناهی ضرایبی از عملگرهای تصویری روی آن فضاست. این نتایج به دنبال بررسی دقیق فضاهای دوری تولید شده توسط ? از نقطه نظر شبکه های باناخ است.

عملگرهای برشی و برد عددی نرمال شده
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1389
  شهلا موم کش   محمود منجگانی

در این پایان نامه تصوری از عملگرهای برشی در یک فضای هیلبرت به دست می آوریم. مطابق تعریف کلاسیک برد عددی عملگر برشی a در یک برش s_? که شامل اعداد مختلطی است که قدر مطلق آرگومان این اعداد کمتر یا مساوی ? باشد قرار می گیرد. و این معادل با بیان معکوس عملگری است که البته در جای خود دقیقا معرفی می شود. سپس موضوع را گسترده تر می کنیم تا آن جا که با برد عددی نرمال شده آشنا می شویم. در هر جا جستجو کنیم می بینیم برشی بودن یک عملگر معانی متفاوتی دارد اما ما در این جا از تعریف کلاسیک آن در یک فضای هیلبرت h استفاده می کنیم. در پایان هم تلاش می کنیم برد عددی را به کمک روش های عددی تشخیص دهیم و سپس سوالاتی برای ادامه کار بیان خواهیم کرد. در ضمن با مثال های مختلفی در زمینه عملگرهای برشی آشنا می شویم.

برد عددی تعمیم یافته ی عملگرهای درجه دوم
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1389
  زهرا انصاری اسفه   محمود منجگانی

در این پایان نامه، برخی از خواص برد عددی عملگرهای درجه دوم و همچنین بردعددی تعمیم یافته ی عملگرهای درجه دوم را بیان می کنیم و سپس در مورد اشکال به وجود آمده توسط آن ها به بحث می پردازیم. اخیراٌ تسو و وو نشان دادند که برد عددی عملگرهای درجه دوم به شکل بیضی است. در ای پایان نامه قصد داریم علاوه بر بیان نتیجه ی تسو-وو ثابت کنیم که برد عددی اساسی عملگرهای درجه دوم نیز به شکل بیضی است. سپس در مورد تعمیم دیگری از برد عددی یعنی c-بردعددی، به بحث می پردازیم. در واقع رفتار c-بردعددی یک عملگر بسیار پیچیده است، حتی اگر عملگر مورد نظر را به یک عملگر درجه دوم محدود کنیم، باز هم شاهد رفتار پیچیده ی آن خواهیم بود، به عنوان مثال در مورد شکل c-بردعددی یک عملگر درجه دوم نمی توانیم مانند برد عددی و برد عددی اساسی صراحتاٌ قضاوت کنیم، ولی با این وجود به بحث در مورد این موضوع می پردازیم و ثابت می کنیم که تحت شرایطی خاص، c-بردعددی یک عملگر درجه دوم به شکل بیضی است. در ادامه نیز برای درک بیشتر، به بیان مثال ها و کاربردهای مطالب مذکور می پردازیم.

احاطه سازی و عملگرهای نگهدارنده آن در فضاهای lp
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1391
  علی بیاتی اشکفتکی   محمود منجگانی

در این پایان نامه مفهوم احاطه سازی در ابعاد نامتناهی بررسی شده و عملگرهای نگهدارنده این رابطه تعیین شده است.

دوگان دوم جبرهای باناخ با برگشت پیوسته
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی 1387
  فاطمه اختری   رسول نصراصفهانی

فرض کنیم a یک – جبر باناخ و a دوگان دوم a مجهز به ضرب آرنز اول باشد. در این پایان نامه به بررسی وجود برگشت روی a حاصل از توسیع برگشت روی a می پردازیم خصوصا دوگان دوم جبرهای گروهی وابسته به گروه موضعا فشرده ی g مانند luc(g), l1(g) و wap(g) را مورد مطالعه قرار می دهیم.همچنین یک مشخصه سازی از برگشت دلخواه روی جبر گروهی l1(g ) و جبر اندازه ی(g) m وابسته به g را ارایه می دهیم و شرط برابری این برگشت دلخواه را با برگشت طبیعی روی l1(g) بیان می کنیم. در پایان به بررسی نمایش ا و تابعک های مثبت و نیز ارتباط آن ها را با توابع معین مثبت وابسته به این برگشت دلخواه می پردازیم.

نامساوی یانگ در عملگرهای از رده ی اثر حالت تساوی
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی 1387
  جواد رستگاری جویباری   محمود منجگانی

نامساوی عددی یانگ یکی از نامساوی های مهم در آنالیز می باشد. پژوهش های زیادی درباره ی تعمیم این نامساوی در جبرهای دیگر و بررسی شرایط تساوی در آن انجام شده است . در سال 2003 ارگرامی و فرنیک نامسوی یانگ را در عملگرهای از رده ی اثر بررسی نموده ونتایج مهمی در مورد حالت تساوی بدست آوردند. تا کنون هیچ توصیفی از حالت تساوی در نامساوی یانگ، در عملگرهای فشرده شناخته نشده است به بیان دیگر مساله ی تساوی در نامساوی یانگ برای عملگرهای فشده یک مساله باز است. در این پایان نامه عملگرهای هیلبرت-اشمیت و از رده ی اثر را تعریف می نماییم و برای عملگرهای اخیر ثابت می کنیم که شرط هیلبرت-اشمیت با تساوی اثرها هم ارز است. براساس هم ارزی مذکور مساله ی تساوی در نامساوی عملگری یانگ را در حالت خاص عملگرهای از رده ی اثر که زیر رده ی مهمی از عملگرهای فشرده می باشند مورد بررسی قرار می دهیم.

قاب ها و پایه های ریس تعمیم یافته
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1392
  طوبی پارسا   فرید بهرامی

همانطور که می دانیم پایه ی هیلبرتی یکی از مفاهیم بسیار مهم در یک فضای هیلبرت است. در عمل بدست آوردن چنین پایه ای برای یک فضای داده شده می تواند بسیار دشوار و یا حتی در برخی موارد غیر عملی باشد. مفهوم قاب یکی از مفاهیمی است که تا حد زیادی نیاز ما را به تعیین پایه هیلبرتی مرتفع می سازد. این مفهوم برای اولین بار در سال 1952 توسط دافین و شفر مطرح شد و آنها از آن به عنوان ابزاری در مطالعه سری های فوریه غیرهارمونیکی استفاده کردند. پس از سالها وقفه، در سال 1985 که مصادف با دوران اوج نظریه موجک بود، دابیچیز، گراسمن و مایر مشاهده کردند می توانند از قابها در بسط سریهای تابعی در l^2 (r) استفاده کنند. این امر به بسط با استفاده از پایه های هیلبرتی بسیار شباهت داشت. این افراد بدین گونه مفهوم قاب را دوباره معرفی کردند و بدین ترتیب مطالعه گسترده ای در مورد نظریه قابها شروع شد. با توجه به خاصیت قاب، این مفهوم کاربرد فراوانی در زمینه پردازش سیگنال ، پردازش تصویر، تراکم داده ها ،نظریه نمونه گیری و غیره دارد. مفهوم قاب، تعمیمهای متفاوتی چون شبه تصویرگر کراندار، قاب زیرفضا، شبه قاب، قابهای مایل و قاب خارجی دارد. یکی از مهمترین تعمیمهای این مفهوم ، قاب تعمیم یافته است که به نوعی سایر تعمیمهای فوق را در بر می گیرد. این تعمیم برای اولین بار در سال 2006 توسط سان مطرح شده است. این پایان نامه به صورت زیر سازمان یافته است. در فصل دوم، مروری بر فضای هیلبرت و عملگرهای خطی خواهیم داشت. در فصل سوم، مفهوم قاب را تعریف می کنیم. در ادامه عملگر قاب را تعریف و به خصوصیات آن می پردازیم. همچنین نشان می دهیم که یک قاب چگونه فضای خود را بازسازی می کند. در بخش بعدی این فصل، پایه ریس را تعریف و خصوصیات آن را بیان می کنیم. در فصل چهارم، قاب تعمیم یافته را تعریف می کنیم. در این فصل نشان می دهیم که چگونه تعمیمهای متفاوتی که تاکنون برای قاب مطرح شده اند؛تحت قاب تعمیم یافته که در اینجا مطرح می شود، قرار می گیرند. سپس عملگر قاب تعمیم یافته را تعریف می کنیم. در بخش بعدی این فصل، دنباله بسل تعمیم یافته، پایه ریس تعمیم یافته و پایه یکا متعامد تعیم یافته را تعریف می کنیم. همچنین در قضیه ای بسیار مهم شرایط معادلی برای قاب، دنباله بسل، پایه ریس و پایه یکا متعامد و تعمیمهایشان ارائه می دهیم.مشاهده می کنیم که با وجود شباهتهای بسیار، تمام خاصیتهای قاب تعمیم یافته و پایه ریس تعمیم یافته، به ترتیب، مشابه با قاب و پایه ریس نیست.

نامساوی ها برای عملگرهای فشرده
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی 1387
  الهه زاهدی نژاد   محمود منجگانی

در این پایان نامه برخی از نامساوی های عددی را برای عملگرهای فشرده بررسی می کنیم. اگر چه توسیعی از کارهای مربوط به نامساوی های عملگری بویژه توابع یکنواعملگری و محدب عملگری وجود دارد اما نتایج بیشتری در مورد نامساوی های عملگری بواسطه ی طیف یا مقادیر ویژه بدست می آیند. تامسون اولین نامساوی اساسی، یعنی نامساوی مثلث را برای ماتریس های مختلط n*n اثبات نمود. نتایج تامسون توسط آکمان-اندرسن و پدرسن به جبرهای فون نویمان تعمیم داده شد. آندو گونه ای از نامساوی یانگ را برای ماتریس ها اثبات نمود : فرض کنیم q,q?(1,?) به طوری در شرط 1/p+1/p=1 صدق نمایند، در این صورت برای ماتریس های n*n مختلط a و b ماتریس یکانی u وابسته به a و b وجود دارد به طوری که ؟؟؟؟؟؟ . نامساوی یانگ تویط ارلیجمن، فارنیک و زنگ به عملگرهای فشرده توسعه داده شد : اگر a و b عملگرهای فشرده روی فضای هیلبرت جدایی پذیر مختلط باشند، انگاه طولپای جزیی u وجود دارد به طوری که فضای ابتدایی u برابر است با ؟؟؟ و برای هر q,q?(1,?) که در شرط 1/p+1/p=1 صدق کنند داریم ؟؟؟؟؟ علاوه بر این اگر ؟؟ یک به یک باشد، انگاه عملگر u در نامساوی بالا را می توان یکانی در نظر گرفت. در این پایان نامه ضمن بررسی خاصیت های فوق، حالت تساوی این نامساوی را نیز برای عملگرهای فشرده ی نرمال جابجایی بررسی می کنیم. سپس به نامساوی یانگ ماتریسی برای نرم هیلبرت-شامیت و نامساوی مثلث می پردازیم.

روش های سازنده در حل مساله معکوس مقادیر ویژه حقیقی نامنفی
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی 1387
  مریم محمدی   رضا مختاری

در این پایان نامه ابتدا شرایط لازم در حل مساله معکوس مقادیر ویژه نامنفی را مطرح و آن در حالت های خاص حل شده بررسی می کنیم سپس به بیان شرایط کافی دارای اثبات های سازنده و پیاده سازی الگوریتم های مربوط در حل مسائل معکوس مقادیر ویژه حقیقی نامنفی و متقارن نامنفی می پردازیم

بررسی ساختار گروه های کوهمولوژی
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1386
  اعظم السادات حسینی   رسول نصراصفهانی

در این پایان نامه، به بررسی ساختار گروه های کوهمولوژی، همولوژی و رابطه ی بین آن ها می پردازیم. به ویژه شرایطی را بررسی می کنیم تحت آن گروه های کوهمولوژی، فضای باناخ با صفر هستند. نشان می دهیم یک یکریختی بین برای یک گروه گسسته ی g و مدار، c از g- مجموعه ی s وجود دارد. علاوه بر آن را برای گروه گسسته ی g، محاسبه می کنیم.

مثبت و به طور مشروط مثبت بودن ماتریس های لوئنر
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1393
  بهروز حیدری ارجلو   محمود منجگانی

در این پایان نامه ابتدا نشان می دهیم که ماتریس های لوئنر متناظر با تابع عملگری محدب روی (1,1-) لزومی ندارد که به طور مشروط معین منفی باشند. سپس نشان می دهیم که ماتریس های لوئنر متناظر با تابع f(t) = t^r به ترتیب برای r در فواصل [0,1]، [1,2] و [2,3] نیمه معین مثبت، به طور مشروط معین منفی و به طور مشروط معین مثبت هستند. علاوه بر ماتریس های لوئنر ماتریس های کونگ نیز بسیار مورد توجه قرار گرفته اند. نشان می دهیم که این ماتریس ها به ترتیب در فواصل [0,1] و [1,3] نیمه معین مثبت و به طور مشروط معین منفی هستند. بنابراین نتیجه می گیریم که رفتار ماتریس های لوئنر وکونگ در فاصله [1,3] متفاوت است.

توان های هادامارد و ماتریس های تمام مثبت
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1393
  شهلا پورمحمدی   محمود منجگانی

در این پایان نامه ابتدا مفاهیم مختلف مثبت بودن ماتریس ها را ارائه می دهیم. آن گاه به بررسی خواص آن ها با ذکر مثال می پردازیم. هدف اصلی ما در این پایان نامه معرفی ماتریس های تمام مثبت ‎ (tp) ‎ و در نهایت ماتریس های نامنفی ‎(tn) ‎ می باشد. همچنین معرفی برخی خواص ماتریس های تمام مثبت و تمام نامنفی و ماتریس هایی که تحت توان هادامارد تمام مثبت و تمام نامنفی باقی می مانند را ارائه خواهیم کرد. ارائه مثال هایی که از این خاصیت پیروی نمی کنند نیز از نتایج این پایان نامه است.