نام پژوهشگر: الهام فیضی

حل عددی برخی مسائل سهموی معکوس با پارامترهای مجهول
thesis وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1390
  الهام فیضی   علی مردان شاهرضایی

در این رساله یک مسأله سهموی معکوس به منظور تعیین هم زمان توابع مجهول p(t)، q(t) و u(x,t) را در نظر می گیریم به طوری که در معادله ی: u_t=u_xx+q(t) u_x+p(t)u+f(x,t); x?(0,1), t?(0,t], (1) با شرایط اولیه-کرانه ای u(x,t)=?(x); x?[0,1], (2) u(0,t)=g_1 (t); t?(0,t] (3) u(1,t)=g_2 (t); t?(0,t] (4) و همراه با شرایط فوق اضافی: u(x^*,t)=e_1 (t), u(x^(**),t)=e_2 (t); x^*,? x?^(**)?(0,1), t?(0,t], (5) صدق نماید که در آن، f(x,t) ?(x)، g_1 (t)، g_2 (t) ،e_1 (t)?0 و e_2 (t)?0 توابع معلوم می باشد و اعدادt ،x^* و ? x?^(**) ثابت های مثبت و معلوم هستند. هرگاه u بیانگر غلظت باشد، معادله (1) انتقال، انتشار و واپاشی یک حلال شیمیایی (یک ردیاب) با غلظت u متحرک در یک محیط متخلخل (یک سفره)، را مدلسازی می کند که در آن q(t) سرعت متوسط (سرعت رانندگی) و p(t)اندازه واپاشی را نشان می دهد. هرگاه u درجه حرارت باشد مسأله (5) - (1) می تواند به عنوان یک مسأله کنترل، به منظور یافتن پارامترهای کنترلی p=p(t)وq=q(t) در نظر گرفته شود به قسمی که در شرایط فوق اضافی (5) صدق نماید. روش ارائه شده در این رساله، فرموله کردن (5) - (1) با استراتژی دیگری می باشد ابتدا مجهول q(t) را به صورت تکه ای ثابت، تقریب می زنیم و بر روی هر بازه ی زمانی که تابع ثابت است، به وسیله ی برخی تبدیلات، مسأله به یک مسأله سهموی ناموضعی مقدار اولیه-کرانه ای تبدیل می شود. در انتها با استفاده از روش تفاضل متناهی به حل عددی مسأله حاصل می پردازیم.