نام پژوهشگر: میترا جزمحتشمی
میترا جزمحتشمی یداله اردوخانی
هدف اصلی در این رساله، حل معادلات انتگرال-دیفرانسیل فردهلم خطی با تأخیر زمانی به صورت باشرایط آمیخته با استفاده از روش های تیلور، هم محلی چبیشف و هم محلی لژاندر می باشد .که در آن تابع مجهول، ، و توابع معلوم در و همچنین تابع معلوم در و ضرایب ، ، و ها ثابت های معلوم می باشد. در روش بسط تیلور، جواب را به صورت سری تیلور قطع شده تقریب می زنیم. به دنبال ضرایب بسط تیلور می باشیم که در نهایت از حل یک دستگاه معادلات خطی، ضرایب مجهول تیلور به دست می آیند. در روش های هم محلی چبیشف و لژاندر، سری چبیشف و لژاندر قطع شده جواب معادله را در نظر گرفته و معادله انتگرال-دیفرانسیل و شرایط داده شده را به یک معادله ماتریسی تبدیل می کنیم، سپس با استفاده از نقاط هم محلی چبیشف در روش چبیشف و نقاط گاوس-لژاندر در روش لژاندر، معادله ماتریسی تبدیل به یک دستگاه از معادلات جبری خطی با ضرایب مجهول چبیشف و لژاندر می شود. در آخر کارایی روش را با مثال هایی مورد تجزیه و تحلیل قرار می دهیم. همچنین روش های فوق را برای حل معادلات انتگرال-دیفرانسیل فردهلم غیرخطی با تأخیر زمانی با شرایط آمیخته نیز به کار می بریم.