تقریبهای متقارن از قاب ها و پایه ها در فضاهای هیلبرت

thesis
  • وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان
  • author
  • adviser
  • Number of pages: First 15 pages
  • publication year 1379
abstract

هدف از رساله حاضر تحقیق در وجود و یکتایی تقریب های متقارن از قاب ها(متناظرا" ، متعامدسازی متقارن از پایه ها در فضای هیلبرت ) می باشد. رساله شامل برخی از کارهای اساسی انجام شده توسط دیوید. آر. لارسن ، ام. فرانک ، سینگ دی دای ، دی گانگ هان ، ای. ج. انسکو، ام. پیرسی ، ا. آلدروبی و پی. ج. کاسازاو ا. کریستین و ج. آر. هلوب می باشد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

قاب ها و پایه های زیرفضاها در فضاهای هیلبرت

در این پایان نامه‎‎نظریه قاب های ‎‎زیرفضاها را برای زیرفضاهای فضای هیلبرت تفکیک پذیر توسعه می دهیم. نشان خواهیم داد که برای هر قاب پارسوال زیرفضاهای ‎w در فضای هیلبرت h‎، یک فضای هیلبرت k که شامل h است‎ و یک پایه متعامد یکه n که w=p(n) وجود خواهد داشت که p‎ یک تصویر متعامد از k‎ به روی ‎‎h‎ است. یک تعریف جدید از تجزیه همانی اتمی در فضای هیلبرت ارائه می دهیم. ‎در‎ حالت خاص، یک عملگر تجزیه اتمی،...

15 صفحه اول

تقریب متقارن فریم ها و پایه ها در فضای هیلبرت

در این پایان نامه پس از معرفی فریم ها و پایه ها، روابط بین آن ها را معرفی میکنیم سپس تقریب متقارن فریم ها را بررسی می کنیم.

فریم ها (قاب ها) و پایه های ریس تعمیم یافته در فضاهای هیلبرت

در این پایان نامه ابتدا‏، پایه های عملگری یا به عبارت دیگر پایه های تعمیم یافته که ازاین ببعد g-پایه نامیده می شوند برای فضاهای هیلبرت معرفی شده است. سپس تمام مشخص سازی ها که در مورد پایه های برداری در فضاهای هیلبرت وجود دارند برای این نوع پایه با کمی تغییرات ارائه شده است.

توپولوژی روی قاب ها در فضاهای هیلبرت و باناخ

let h be a separable hilbert space and let b be the set of bessel sequences in h. by using several interesting results in operator theory we study some topological properties of frames and riesz bases by constructing a banach space structure on b. the convergence of a sequence of elements in b is de_ned and we determine whether important properties of the sequence is preserved under the con...

قاب ها و پایه های زیر فضاها در فضای هیلبرت

در این پایان نامه پس از بیان تعریف قاب و بیان اهمیت قاب پارسوال در کاربردها به تعمیم قاب میپردازیم و این گسترش را قاب زیر فضاها می نامیم و بسیاری از قضایای مربوط به قاب را به این تعمیم جدید انتقال می دهیم. قضیه اصلی این پایان نامه در باره قاب زیر فضاهای پارسوال است. همچنین با استفاده از این تعمیم تعریف جدیدی از تجزیه گر همانی ارایه میدهیم که با استفاده از آن به فرمول بازسازی مفیدی دست میابیم.

قاب ها و تعمیم های آن در فضاهای هیلبرت و *c-مدول های هیلبرت

در این رساله به مطالعه و بررسی برخی از ویژگی های قاب ها، g-قابها و قاب های مخلوط در فضاهای هیلبرت و *c-مدول های هیلبرت می پردازیم. در ابتدا نشان می دهیم تحت یک سری از شرایط، حاصلجمع مستقیم تعداد شمارایی از g-قاب ها (g-پایه های ریس) یک g-قاب (g-پایه ریس ) برای فضای حاصلجمع مستقیم می باشد. همچنین نشان می دهیم حاصلضرب تانسوری تعداد متناهی از g-قابها (به ترتیب قاب های مخلوط، قاب ها، g-پایه های ریس)...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023