Mojgan Akbari

P.h.D

[ 1 ] - Application of the Kudryashov method and the functional variable method for the complex KdV equation

In this present work, the Kudryashov method and the functional variable method are used to construct exact solutions of the complex KdV equation. The Kudryashov method and the functional variable method are powerful methods for obtaining exact solutions of nonlinear evolution equations.

[ 2 ] - Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

[ 3 ] - Numerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order

In this ‎article‎‎, ‎an ‎ap‎plied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of ‎high order ‎Volterra ‎integro-differential‎ equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical ‎illustrations‎ have been ‎solved‎ to ‎assert...

[ 4 ] - Schwarz boundary problem on a triangle

In this paper, the Schwarz boundary value problem (BVP) for the inhomogeneous Cauchy-Riemann equation in a triangle is investigated explicitly. Firstly, by the technique of parquetingreflection and the Cauchy-Pompeiu representation formula a modified Cauchy-Schwarz representation formula is obtained. Then, the solution of the Schwarz BVP is explicitly solved. In particular, the boundary behavio...