Mohammad Shahriari
Department of Mathematics, Faculty of Science, University of Maragheh, Maragheh, Iran
[ 1 ] - Numerical solution of linear control systems using interpolation scaling functions
The current paper proposes a technique for the numerical solution of linear control systems.The method is based on Galerkin method, which uses the interpolating scaling functions. For a highly accurate connection between functions and their derivatives, an operational matrix for the derivatives is established to reduce the problem to a set of algebraic equations. Several test problems are given...
[ 2 ] - Inverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions
In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining a new Hilbert space and using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...
[ 3 ] - Numerical solution of the Sturm-Liouville problem by using Chebyshev cardinal functions
In this manuscript, a numerical technique is presented for finding the eigenvalues of the regular Sturm-Liouville problems. The Chebyshev cardinal functions are used to approximate the eigenvalues of a regular Sturm-Liouville problem with Dirichlet boundary conditions. These functions defined by the Chebyshev function of the first kind. By using the operational matrix of derivative the problem ...
[ 4 ] - Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
[ 5 ] - Inverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
[ 6 ] - About Subspace-Frequently Hypercyclic Operators
In this paper, we introduce subspace-frequently hypercyclic operators. We show that these operators are subspace-hypercyclic and there are subspace-hypercyclic operators that are not subspace-frequently hypercyclic. There is a criterion like to subspace-hypercyclicity criterion that implies subspace-frequent hypercyclicity and if an operator $T$ satisfies this criterion, then $Toplus T$ is sub...
Co-Authors