Mohammad Roueentan

Department of Mathematics, College of Science, Shiraz University, Shiraz 71454, Iran.

[ 1 ] - Quasi-projective covers of right $S$-acts

In this paper $S$ is a monoid with a left zero and $A_S$ (or $A$) is a unitary right $S$-act. It is shown that a monoid $S$ is right perfect (semiperfect) if and only if every (finitely generated) strongly flat right $S$-act is quasi-projective. Also it is shown that if every right $S$-act has a unique zero element, then the existence of a quasi-projective cover for each right act implies that ...

[ 2 ] - A NEW CHARACTERIZATION OF ABSOLUTELY PO-PURE AND ABSOLUTELY PURE S-POSETS

In this paper, we investigate po-purity using finitely presented S-posets, and give some equivalent conditions under which an S-poset is absolutely po-pure. We also introduce strongly finitely presented S-posets to characterize absolutely pure S-posets. Similar to the acts, every finitely presented cyclic S-posets is isomorphic to a factor S-poset of a pomonoid S by a finitely generated right con...

Co-Authors